Gueriau Pierre, Réguer Solenn, Leclercq Nicolas, Cupello Camila, Brito Paulo M, Jauvion Clément, Morel Séverin, Charbonnier Sylvain, Thiaudière Dominique, Mocuta Cristian
Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France.
Université Paris-Saclay, CNRS, ministère de la Culture, UVSQ, MNHN, Institut photonique d'analyse non-destructive européen des matériaux anciens, 91192 Saint-Aubin, France.
J R Soc Interface. 2020 Aug;17(169):20200216. doi: 10.1098/rsif.2020.0216. Epub 2020 Aug 26.
Fossils, including those that occasionally preserve decay-prone soft tissues, are mostly made of minerals. Accessing their chemical composition provides unique insight into their past biology and/or the mechanisms by which they preserve, leading to a series of developments in chemical and elemental imaging. However, the mineral composition of fossils, particularly where soft tissues are preserved, is often only inferred indirectly from elemental data, while X-ray diffraction that specifically provides phase identification received little attention. Here, we show the use of synchrotron radiation to generate not only X-ray fluorescence elemental maps of a fossil, but also mineralogical maps in transmission geometry using a two-dimensional area detector placed behind the fossil. This innovative approach was applied to millimetre-thick cross-sections prepared through three-dimensionally preserved fossils, as well as to compressed fossils. It identifies and maps mineral phases and their distribution at the microscale over centimetre-sized areas, benefitting from the elemental information collected synchronously, and further informs on texture (preferential orientation), crystallite size and local strain. Probing such crystallographic information is instrumental in defining mineralization sequences, reconstructing the fossilization environment and constraining preservation biases. Similarly, this approach could potentially provide new knowledge on other (bio)mineralization processes in environmental sciences. We also illustrate that mineralogical contrasts between fossil tissues and/or the encasing sedimentary matrix can be used to visualize hidden anatomies in fossils.
化石,包括那些偶尔能保存易腐烂软组织的化石,大多由矿物质构成。分析其化学成分能为了解其过去的生物学特征和/或保存机制提供独特视角,从而推动化学和元素成像技术的一系列发展。然而,化石的矿物成分,尤其是在保存有软组织的情况下,通常只能从元素数据中间接推断,而专门用于物相鉴定的X射线衍射却很少受到关注。在此,我们展示了利用同步辐射不仅能生成化石的X射线荧光元素图,还能使用置于化石后方的二维面积探测器在透射几何条件下生成矿物学图谱。这种创新方法应用于通过三维保存的化石制备的毫米厚横截面以及压缩化石。它能在厘米级区域的微观尺度上识别和绘制矿物相及其分布,受益于同步收集的元素信息,并进一步揭示纹理(择优取向)、微晶尺寸和局部应变。探究此类晶体学信息有助于确定矿化序列、重建化石形成环境并限制保存偏差。同样,这种方法可能为环境科学中的其他(生物)矿化过程提供新知识。我们还表明,化石组织和/或包裹它们的沉积基质之间的矿物学对比可用于可视化化石中隐藏的解剖结构。