Suppr超能文献

[创伤护理数字化面临的挑战]

[Challenges of digitalization in trauma care].

作者信息

Trentzsch H, Osterhoff G, Heller R, Nienaber U, Lazarovici M

机构信息

Institut für Notfallmedizin und Medizinmanagement (INM), Klinikum der Universität München, LMU München, Schillerstr. 53, 80336, München, Deutschland.

Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland.

出版信息

Unfallchirurg. 2020 Nov;123(11):843-848. doi: 10.1007/s00113-020-00859-7.

Abstract

The increasing digitalization of social life opens up new possibilities for modern health care. This article describes innovative application possibilities that could help to sustainably improve the treatment of severe injuries in the future with the help of methods such as big data, artificial intelligence, intelligence augmentation, and machine learning. For the successful application of these methods, suitable data sources must be available. The TraumaRegister DGU® (TR-DGU) currently represents the largest database in Germany in the field of care for severely injured patients that could potentially be used for digital innovations. In this context, it is a good example of the problem areas such as data transfer, interoperability, standardization of data sets, parameter definitions, and ensuring data protection, which still represent major challenges for the digitization of trauma care. In addition to the further development of new analysis methods, solutions must also continue to be sought to the question of how best to intelligently link the relevant data from the various data sources.

摘要

社会生活日益数字化为现代医疗保健带来了新的可能性。本文介绍了一些创新的应用可能性,借助大数据、人工智能、智能增强和机器学习等方法,有望在未来持续改善重伤治疗。要成功应用这些方法,必须有合适的数据源。创伤登记数据库DGU®(TR-DGU)目前是德国重伤患者护理领域最大的数据库,有可能用于数字创新。在此背景下,它是数据传输、互操作性、数据集标准化、参数定义以及确保数据保护等问题领域的一个典型例子,这些问题仍然是创伤护理数字化的重大挑战。除了进一步开发新的分析方法外,还必须继续寻求解决方案,以解决如何最好地智能链接来自各种数据源的相关数据这一问题。

相似文献

1
[Challenges of digitalization in trauma care].
Unfallchirurg. 2020 Nov;123(11):843-848. doi: 10.1007/s00113-020-00859-7.
4
Evaluation of new quality indicators for the TraumaRegister DGU using the systematic QUALIFY methodology.
Eur J Trauma Emerg Surg. 2020 Jun;46(3):449-460. doi: 10.1007/s00068-018-1055-z. Epub 2018 Dec 14.
5
Missed hand and forearm injuries in multiple trauma patients: An analysis from the TraumaRegister DGU®.
Injury. 2020 Jul;51(7):1608-1617. doi: 10.1016/j.injury.2020.04.022. Epub 2020 May 8.
6
[Empirical evaluation of quality indicators for severely injured patients in the TraumaRegister DGU®].
Unfallchirurg. 2020 Mar;123(3):206-215. doi: 10.1007/s00113-019-0699-4.
7
[Polytrauma in old age-Knowledge from the TraumaRegister DGU®].
Chirurg. 2019 Oct;90(10):791-794. doi: 10.1007/s00104-019-01019-3.
8
Penetrating injuries in Germany - epidemiology, management and outcome an analysis based on the TraumaRegister DGU®.
Scand J Trauma Resusc Emerg Med. 2021 Jun 13;29(1):80. doi: 10.1186/s13049-021-00895-1.

引用本文的文献

本文引用的文献

7
Evolution and Current Applications of Robot-Assisted Fracture Reduction: A Comprehensive Review.
Ann Biomed Eng. 2020 Jan;48(1):203-224. doi: 10.1007/s10439-019-02332-y. Epub 2019 Jul 29.
8
[Tele-emergency physician : New care concept in emergency medicine].
Unfallchirurg. 2019 Sep;122(9):683-689. doi: 10.1007/s00113-019-0679-8.
9
Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions.
AJR Am J Roentgenol. 2019 Sep;213(3):506-513. doi: 10.2214/AJR.19.21117. Epub 2019 Jun 5.
10
diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering.
Commun Biol. 2019 May 14;2:183. doi: 10.1038/s42003-019-0415-5. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验