Suppr超能文献

在 R6/2 亨廷顿病模型小鼠的外苍白球中增强 γ-氨基丁酸反应的机制。

Mechanisms underlying the enhancement of γ-aminobutyric acid responses in the external globus pallidus of R6/2 Huntington's disease model mice.

机构信息

IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

J Neurosci Res. 2020 Nov;98(11):2349-2356. doi: 10.1002/jnr.24710. Epub 2020 Aug 27.

Abstract

In Huntington's disease (HD), the output of striatal indirect pathway medium-sized spiny neurons (MSNs) is altered in its target region, the external globus pallidus (GPe). In a previous study we demonstrated that selective optogenetic stimulation of indirect pathway MSNs induced prolonged decay time of γ-aminobutyric acid (GABA) responses in GPe neurons. Here we identified the mechanism underlying this alteration. Electrophysiological recordings in slices from symptomatic R6/2 and wildtype (WT) mice were used to evaluate, primarily, the effects of GABA transporter (GAT) antagonists on responses evoked by optogenetic activation of indirect pathway MSNs. In addition, immunohistochemistry (IHC) and Western blots (WBs) were used to examine GAT-3 expression in HD and WT mice. A GAT-3 blocker (SNAP5114) increased decay time of GABA responses in WT and HD GPe neurons, but the effect was significantly greater in WT neurons. In contrast, a GAT-1 antagonist (NO-711) or a GABA receptor antagonist (CGP 54626) produced small increases in decay time but no differential effects between genotypes. IHC and WBs showed reduction of GAT-3 expression in the GPe of HD mice. Thus, reduced expression or dysfunction of GAT-3 could underlie alterations of GPe responses to GABA inputs from striatum and could be a target for therapeutic intervention.

摘要

在亨廷顿病(HD)中,纹状体间接通路中型棘突神经元(MSNs)的输出在外苍白球(GPe)的靶区发生改变。在之前的研究中,我们证明了选择性光遗传学刺激间接通路 MSNs 可诱导 GPe 神经元中 γ-氨基丁酸(GABA)反应的延长衰减时间。在这里,我们确定了这种改变的机制。使用来自有症状的 R6/2 和野生型(WT)小鼠切片中的电生理记录,主要评估 GABA 转运蛋白(GAT)拮抗剂对间接通路 MSNs 光遗传学激活引起的反应的影响。此外,还使用免疫组织化学(IHC)和 Western blot(WB)检查 HD 和 WT 小鼠中的 GAT-3 表达。GAT-3 阻断剂(SNAP5114)增加了 WT 和 HD GPe 神经元中 GABA 反应的衰减时间,但在 WT 神经元中的作用明显更大。相比之下,GAT-1 拮抗剂(NO-711)或 GABA 受体拮抗剂(CGP 54626)仅使衰减时间略有增加,但在基因型之间没有差异。 IHC 和 WB 显示 HD 小鼠 GPe 中 GAT-3 表达减少。因此,GAT-3 的表达减少或功能障碍可能是导致从纹状体到 GPe 的 GABA 输入反应改变的基础,并且可能是治疗干预的目标。

相似文献

2
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
J Neurosci. 2018 May 16;38(20):4678-4694. doi: 10.1523/JNEUROSCI.0434-18.2018. Epub 2018 Apr 24.
4
Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3.
Front Neural Circuits. 2013 Nov 26;7:188. doi: 10.3389/fncir.2013.00188. eCollection 2013.
7
Dysregulation of the Basal Ganglia Indirect Pathway in Early Symptomatic Huntington's Disease Mice.
J Neurosci. 2022 Mar 9;42(10):2080-2102. doi: 10.1523/JNEUROSCI.0782-21.2022. Epub 2022 Jan 20.
8
Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease.
J Chem Neuroanat. 2009 Jul;37(4):266-81. doi: 10.1016/j.jchemneu.2009.02.001. Epub 2009 Feb 21.

引用本文的文献

1
Restoring Compromised Cl in D2 Neurons of a Huntington's Disease Mouse Model Rescues Motor Disability.
J Neurosci. 2024 Dec 11;44(50):e0215242024. doi: 10.1523/JNEUROSCI.0215-24.2024.
2
Application of Optogenetics in Neurodegenerative Diseases.
Cell Mol Neurobiol. 2024 Jul 26;44(1):57. doi: 10.1007/s10571-024-01486-1.
3
Correlation between the gut microbiome and neurodegenerative diseases: a review of metagenomics evidence.
Neural Regen Res. 2024 Apr;19(4):833-845. doi: 10.4103/1673-5374.382223.
4
A bibliometric profile of optogenetics: quantitative and qualitative analyses.
Front Neurosci. 2023 Jun 22;17:1221316. doi: 10.3389/fnins.2023.1221316. eCollection 2023.
5
Synaptic pathology in Huntington's disease: Beyond the corticostriatal pathway.
Neurobiol Dis. 2022 Jan;162:105574. doi: 10.1016/j.nbd.2021.105574. Epub 2021 Nov 27.
6
A Brief History and the Significance of the GABA Receptor.
Curr Top Behav Neurosci. 2022;52:1-17. doi: 10.1007/7854_2021_264.
7
Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models.
Neuroscientist. 2022 Feb;28(1):20-40. doi: 10.1177/1073858420972662. Epub 2020 Nov 16.

本文引用的文献

3
GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents.
Cell Rep. 2018 May 8;23(6):1678-1690. doi: 10.1016/j.celrep.2018.04.014.
4
Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
J Neurosci. 2018 May 16;38(20):4678-4694. doi: 10.1523/JNEUROSCI.0434-18.2018. Epub 2018 Apr 24.
5
Alteration of GABAergic neurotransmission in Huntington's disease.
CNS Neurosci Ther. 2018 Apr;24(4):292-300. doi: 10.1111/cns.12826. Epub 2018 Feb 21.
6
Stimulation of synaptoneurosome glutamate release by monomeric and fibrillated α-synuclein.
J Neurosci Res. 2017 Sep;95(9):1871-1887. doi: 10.1002/jnr.24024. Epub 2017 Jan 24.
9
The Neuropathology of Huntington's Disease.
Curr Top Behav Neurosci. 2015;22:33-80. doi: 10.1007/7854_2014_354.
10
The role of dopamine in Huntington's disease.
Prog Brain Res. 2014;211:235-54. doi: 10.1016/B978-0-444-63425-2.00010-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验