Suppr超能文献

两阶段受试者工作特征曲线估计在队列研究中的应用。

Two-stage receiver operating-characteristic curve estimator for cohort studies.

机构信息

Department of Statistics, University of Oviedo, Oviedo, Spain.

Biomedical Data Science Department, Geisel school of Medicine at Dartmouth, Hanover, NH, USA.

出版信息

Int J Biostat. 2020 Aug 21;17(1):117-137. doi: 10.1515/ijb-2019-0097.

Abstract

The receiver operating-characteristic (ROC) curve is a graphical statistical tool routinely used for studying the classification accuracy in both, diagnostic and prognosis problems. Given the different nature of these situations, ROC curve estimation has been separately considered for binary (diagnostic) and time-to-event (prognosis) outcomes, even for data coming from the same study design. In this work, the authors propose a two-stage ROC curve estimator which allows to link both contexts through a general prediction model (first-stage) and the empirical cumulative estimator of the distribution function (second-stage) of the considered test (marker) on the total population. The so-called two-stage Mixed-Subject (sMS) approach proves its behavior on both, large-samples (theoretically) and finite-samples (via Monte Carlo simulations). Besides, a useful asymptotic distribution for the concomitant area under the curve is also computed. Results show the ability of the proposed estimator to fit non-standard situations by considering flexible predictive models. Two real-world examples, one with binary and one with time-dependent outcomes, help us to a better understanding of the proposed methodology on usual practical circumstances. The R code used for the practical implementation of the proposed methodology and its documentation is provided as supplementary material.

摘要

受试者工作特征 (ROC) 曲线是一种图形统计工具,常用于研究诊断和预后问题中的分类准确性。鉴于这些情况的不同性质,ROC 曲线估计分别针对二分类(诊断)和时变事件(预后)结果进行了考虑,即使对于来自同一研究设计的数据也是如此。在这项工作中,作者提出了一种两阶段 ROC 曲线估计器,该估计器允许通过一般预测模型(第一阶段)和考虑的测试(标志物)在总人群中的分布函数的经验累积估计器(第二阶段)将这两个上下文联系起来。所谓的两阶段混合受试者 (sMS) 方法在大样本(理论上)和有限样本(通过蒙特卡罗模拟)中都证明了其行为。此外,还计算了伴随曲线下面积的有用渐近分布。结果表明,该估计器能够通过考虑灵活的预测模型来适应非标准情况。两个实际示例,一个是二分类,另一个是时变结果,有助于我们在常见实际情况下更好地理解所提出的方法。用于实现所提出方法的实际实施的 R 代码及其文档作为补充材料提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验