Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York 12208
Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208.
J Neurosci. 2020 Sep 30;40(40):7593-7608. doi: 10.1523/JNEUROSCI.2754-19.2020. Epub 2020 Aug 31.
Excessive activation of mammalian target of rapamycin (mTOR) signaling is epileptogenic in genetic epilepsy. However, the exact role of microglial mTOR in acquired epilepsy remains to be clarified. In the present study, we found that mTOR is strongly activated in microglia following excitatory injury elicited by status epilepticus. To determine the role of microglial mTOR signaling in excitatory injury and epileptogenesis, we generated mice with restrictive deletion of mTOR in microglia. Both male and female mice were used in the present study. We found that mTOR-deficient microglia lost their typical proliferative and inflammatory responses to excitatory injury, whereas the proliferation of astrocytes was preserved. In addition, mTOR-deficient microglia did not effectively engulf injured/dying neurons. More importantly, microglial mTOR-deficient mice displayed increased neuronal loss and developed more severe spontaneous seizures. These findings suggest that microglial mTOR plays a protective role in mitigating neuronal loss and attenuating epileptogenesis in the excitatory injury model of epilepsy. The mammalian target of rapamycin (mTOR) pathway is strongly implicated in epilepsy. However, the effect of mTOR inhibitors in preclinical models of acquired epilepsy is inconsistent. The broad presence of mTOR signaling in various brain cells could prevent mTOR inhibitors from achieving a net therapeutic effect. This conundrum has spurred further investigation of the cell type-specific effects of mTOR signaling in the CNS. We found that activation of microglial mTOR is antiepileptogenic. Thus, microglial mTOR activation represents a novel antiepileptogenic route that appears to parallel the proepileptogenic route of neuronal mTOR activation. This may explain why the net effect of mTOR inhibitors is paradoxical in the acquired models of epilepsy. Our findings could better guide the use of mTOR inhibitors in preventing acquired epilepsy.
哺乳动物雷帕霉素靶蛋白(mTOR)信号的过度激活在遗传性癫痫中具有致痫性。然而,小胶质细胞 mTOR 在获得性癫痫中的确切作用仍有待阐明。在本研究中,我们发现癫痫持续状态引起的兴奋性损伤后,小胶质细胞中的 mTOR 被强烈激活。为了确定小胶质细胞 mTOR 信号在兴奋性损伤和癫痫发生中的作用,我们生成了小胶质细胞中 mTOR 限制性缺失的小鼠。本研究使用了雄性和雌性小鼠。我们发现 mTOR 缺失的小胶质细胞失去了对兴奋性损伤的典型增殖和炎症反应,而星形胶质细胞的增殖则得到保留。此外,mTOR 缺失的小胶质细胞不能有效地吞噬受损/死亡的神经元。更重要的是,小胶质细胞 mTOR 缺失的小鼠表现出更多的神经元丢失,并发展出更严重的自发性癫痫发作。这些发现表明,小胶质细胞 mTOR 在减轻兴奋性损伤模型中神经元丢失和抑制癫痫发生中发挥保护作用。哺乳动物雷帕霉素(mTOR)途径在癫痫中强烈涉及。然而,mTOR 抑制剂在获得性癫痫的临床前模型中的效果并不一致。mTOR 信号在各种脑细胞中的广泛存在可能阻止 mTOR 抑制剂达到净治疗效果。这一难题促使进一步研究 mTOR 信号在中枢神经系统中的细胞类型特异性效应。我们发现小胶质细胞 mTOR 的激活具有抗癫痫作用。因此,小胶质细胞 mTOR 的激活代表了一种新的抗癫痫发生途径,似乎与神经元 mTOR 激活的致癫痫发生途径平行。这可能解释了为什么 mTOR 抑制剂在获得性癫痫模型中的净效应是矛盾的。我们的发现可以更好地指导 mTOR 抑制剂在预防获得性癫痫中的应用。