Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard - Lyon 1, Villeurbanne, France.
Mol Biol Evol. 2021 Mar 9;38(3):761-776. doi: 10.1093/molbev/msaa215.
The understanding of how proteins evolve to perform novel functions has long been sought by biologists. In this regard, two homologous bacterial enzymes, PafA and Dop, pose an insightful case study, as both rely on similar mechanistic properties, yet catalyze different reactions. PafA conjugates a small protein tag to target proteins, whereas Dop removes the tag by hydrolysis. Given that both enzymes present a similar fold and high sequence similarity, we sought to identify the differences in the amino acid sequence and folding responsible for each distinct activity. We tackled this question using analysis of sequence-function relationships, and identified a set of uniquely conserved residues in each enzyme. Reciprocal mutagenesis of the hydrolase, Dop, completely abolished the native activity, at the same time yielding a catalytically active ligase. Based on the available Dop and PafA crystal structures, this change of activity required a conformational change of a critical loop at the vicinity of the active site. We identified the conserved positions essential for stabilization of the alternative loop conformation, and tracked alternative mutational pathways that lead to a change in activity. Remarkably, all these pathways were combined in the evolution of PafA and Dop, despite their redundant effect on activity. Overall, we identified the residues and structural elements in PafA and Dop responsible for their activity differences. This analysis delineated, in molecular terms, the changes required for the emergence of a new catalytic function from a preexisting one.
蛋白质如何进化以执行新功能一直是生物学家所追求的。在这方面,两种同源的细菌酶,PafA 和 Dop,提供了一个有见地的案例研究,因为它们依赖于相似的机械性质,但催化不同的反应。PafA 将一个小的蛋白质标签缀合到靶蛋白上,而 Dop 通过水解去除标签。鉴于这两种酶具有相似的折叠和高度的序列相似性,我们试图确定负责每种独特活性的氨基酸序列和折叠的差异。我们使用序列-功能关系的分析来解决这个问题,并在每种酶中鉴定了一组独特保守的残基。水解酶 Dop 的相互突变完全消除了天然活性,同时产生了具有催化活性的连接酶。基于现有的 Dop 和 PafA 晶体结构,这种活性的变化需要在活性位点附近的关键环的构象变化。我们确定了对替代环构象稳定至关重要的保守位置,并跟踪了导致活性变化的替代突变途径。值得注意的是,尽管它们对活性的冗余影响,所有这些途径都在 PafA 和 Dop 的进化中结合在一起。总的来说,我们确定了 PafA 和 Dop 中负责它们活性差异的残基和结构元素。这项分析从分子上描绘了从预先存在的功能中出现新催化功能所需的变化。