Wang Wei, Duong-Viet Cuong, Tuci Giulia, Liu Yuefeng, Rossin Andrea, Luconi Lapo, Nhut Jean-Mario, Nguyen-Dinh Lam, Giambastiani Giuliano, Pham-Huu Cuong
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR 7515 CNRS- University of Strasbourg (UdS), 25, rue Becquerel, 67087, Strasbourg Cedex 02, France.
Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10-50019, Sesto F.no, Florence, Italy.
ChemSusChem. 2020 Oct 21;13(20):5468-5479. doi: 10.1002/cssc.202001885. Epub 2020 Sep 15.
In this work, we joined highly Ni-loaded γ-Al O composites, straightforwardly prepared by impregnation methods, with an induction heating setup suited to control, almost in real-time, any temperature swing at the catalyst sites (i. e., "hot spots" ignition) caused by an exothermic reaction at the heart of the power-to-gas (P2G) chain: CO methanation. We have shown how the combination of a poor thermal conductor (γ-Al O ) as support for large and highly interconnected nickel aggregates together with a fast heat control of the temperature at the catalytic bed allow part of the extra-heat generated by the reaction exothermicity to be reused for maintaining the catalyst under virtual isothermal conditions, hence reducing the reactor power supply. Most importantly, a highly efficient methanation scheme for substitute natural gas (SNG) production (X up 98 % with >99 % S ) under operative temperatures (150-230 °C) much lower than those commonly required with traditional heating setup has been proposed. As far as sustainable and environmental issues are concerned, this approach re-evaluates industrially attractive composites (and their large-scale preparation methods) for application to key processes at the heart of P2G chain while providing robust catalysts for which risks associated to nano-objects leaching phenomena are markedly reduced if not definitively suppressed.
在这项工作中,我们将通过浸渍法直接制备的高负载镍γ - Al₂O₃复合材料与感应加热装置相结合,该装置适合几乎实时地控制由电力到气体(P2G)链核心的放热反应(即“热点”点火)在催化剂位点引起的任何温度波动:CO甲烷化反应。我们已经展示了,作为大尺寸且高度互连的镍聚集体载体的低热导率材料(γ - Al₂O₃)与催化床温度的快速热控制相结合,如何使反应放热产生的部分额外热量得以重新利用,从而在虚拟等温条件下维持催化剂,进而减少反应器的电力供应。最重要的是,我们提出了一种在操作温度(150 - 230°C)远低于传统加热装置通常所需温度的情况下,用于生产替代天然气(SNG)的高效甲烷化方案(XCO转化率高达98%,CH₄选择性>99%)。就可持续性和环境问题而言,这种方法重新评估了具有工业吸引力的复合材料(及其大规模制备方法)在P2G链核心关键过程中的应用,同时提供了坚固的催化剂,对于这类催化剂,如果纳米物体浸出现象没有被完全抑制,那么与之相关的风险也会显著降低。