Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
J Biol Chem. 2020 Nov 6;295(45):15378-15397. doi: 10.1074/jbc.RA120.013495. Epub 2020 Sep 1.
Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG) and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c- replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG) microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG) and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG) lagging-strand template. (CTG/CAG) chromosome fragility is repeat length-dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG) microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG) microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure-prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.
短串联重复 DNA 序列,称为微卫星,在人类基因组中大量存在。由于它们倾向于形成稳定的非 B 型 DNA 结构,这些微卫星表现出长度不稳定性和对 DNA 双链断裂 (DSB) 的易感性。复制依赖性微卫星 DSB 与人类发育疾病和癌症中的基因组不稳定性特征有关。为了探究微卫星 DSB 的原因和后果,我们设计了一种双荧光报告系统,以检测扩展 (CTG/CAG) 和多嘌呤/多嘧啶 (Pu/Py) 镜像重复结构以及整合在单个异位染色体位点上的 c-复制起点处的 DSB。(CTG/CAG) 微卫星附近的限制切割导致侧翼 AluY 元件之间的同源定向单链退火和报告基因缺失,可通过流式细胞术检测到。然而,在没有限制切割的情况下,内源性和外源性复制应激因子会在 (CTG/CAG) 和 Pu/Py 微卫星处诱导 DSB。DSB 映射到 (CTG) 滞后链模板下游边缘的一个狭窄区域。(CTG/CAG) 染色体脆弱性依赖于重复长度,而 Pu/Py 微卫星的不稳定性依赖于复制极性。引人注目的是,限制生成的 DSB 和复制依赖性 DSB 不是通过相同的机制修复的。DNA 损伤反应蛋白 (Rad18、聚合酶 (Pol) η、Pol κ) 的敲低增加或减少 (Mus81) (CTG/CAG) 微卫星对复制应激的敏感性。异位 (CTG/CAG) 微卫星处的复制应激和 DSB 导致断裂诱导的复制和侧翼胸苷激酶基因的高频突变。我们的结果表明,易形成非 B 型结构的微卫星易受复制依赖性 DSB 的影响,从而导致基因组不稳定。