Suppr超能文献

多巴胺衍生的氮掺杂羧基多壁碳纳米管修饰的石墨毡,对钒氧化还原液流电池具有增强的电化学活性

Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries.

作者信息

Li Qiang, Bai Anyu, Zhang Tianyu, Li Song, Sun Hong

机构信息

School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, People's Republic of China.

出版信息

R Soc Open Sci. 2020 Jul 1;7(7):200402. doi: 10.1098/rsos.200402. eCollection 2020 Jul.

Abstract

Improving the electrochemical activity of electrodes is essential to the development of vanadium redox flow battery (VRFB). In this work, we prepared a novel electrode with the modification of nitrogen-doped carboxyl multiwalled carbon nanotubes using dopamine as an eco-friendly nitrogen source (carboxyl MWCNT@PDAt). Characterization and electrochemical measurements reveal that the synthesized carboxyl MWCNT@PDAt-modified graphite felt electrode (carboxyl MWCNT@PDAt/GF) exhibits excellent electrochemical performance toward VO/ reaction. Superior battery performance was obtained with the energy efficiency of 80.54% at a current density of 80 mA cm. Excellent durability of the carboxyl MWCNT@PDAt/GF electrode was confirmed by long-term charge/discharge tests. The enhanced reaction kinetics of VO/ is ascribed to the synergetic effect of oxygen and nitrogen containing groups on graphite felt surface and the presence of nitrogen-doped carboxyl multiwalled carbon nanotubes (MWCNT). The facile approach proposed in this paper provides a new route to the fabrication of electrode with excellent performance for VRFB.

摘要

提高电极的电化学活性对于钒氧化还原液流电池(VRFB)的发展至关重要。在这项工作中,我们使用多巴胺作为环保型氮源制备了一种经氮掺杂羧基多壁碳纳米管修饰的新型电极(羧基MWCNT@PDAt)。表征和电化学测量表明,合成的羧基MWCNT@PDAt修饰石墨毡电极(羧基MWCNT@PDAt/GF)对VO/反应表现出优异的电化学性能。在电流密度为80 mA cm时,能量效率达到80.54%,获得了优异的电池性能。通过长期充放电测试证实了羧基MWCNT@PDAt/GF电极具有出色的耐久性。VO/增强的反应动力学归因于石墨毡表面含氧和含氮基团的协同作用以及氮掺杂羧基多壁碳纳米管(MWCNT)的存在。本文提出的简便方法为制备具有优异性能的VRFB电极提供了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0371/7428217/20a6a4403531/rsos200402-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验