Chen Xiaoli, Cheng Chen, Ding Manling, Xia Yujian, Chang Lo-Yueh, Chan Ting-Shan, Tang Haolin, Zhang Nian, Zhang Liang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43665-43673. doi: 10.1021/acsami.0c11570. Epub 2020 Sep 16.
Sodium layered transition-metal oxides have attracted great attention for advanced Na-ion batteries (NIBs) because of their rich structural diversity and superior specific capacity provided by not only cation redox reactions but also possible oxygen-related anionic redox reactions. However, they usually undergo severe electrochemical performance fading, especially the voltage retention during the cationic and anionic redox processes. Herein, we design and synthesize a couple of novel sodium lithium magnesium aluminum manganese oxides (NaLiMgAlMnO) with the same Na coordination environment but different oxide layer stacking sequences, namely, P2-NLMAMO and P3-NLMAMO. We systematically investigate and compare the voltage decay phenomenon and the cationic/anionic redox processes under different electrochemical cycling windows combined with ex situ hard and soft X-ray absorption spectroscopy techniques. The results clearly indicate that the P2-NLMAMO electrode with a lower extent of Mn redox is prone to deliver a superior capacity retention and rate performance, more importantly, a higher average voltage in contrast to the P3-type counterpart. In addition, negligible change is detected for the average discharge voltage upon extended cycling when increasing the discharge cutoff voltage to 2.5 V for both P2-NLMAMO and P3-NLMAMO. This unique feature work provides an effective strategy for developing high-capacity P-type layered cathodes based on both cationic and anionic redox chemistry under controlled crystal structure arrangement, which could lead to a deeper understanding of the correlation between crystal structure and electrochemical performance for NIBs.
钠层状过渡金属氧化物因其丰富的结构多样性以及不仅由阳离子氧化还原反应而且还可能由与氧相关的阴离子氧化还原反应提供的优异比容量,在先进的钠离子电池(NIBs)中引起了极大关注。然而,它们通常会经历严重的电化学性能衰退,尤其是在阳离子和阴离子氧化还原过程中的电压保持率。在此,我们设计并合成了几种具有相同钠配位环境但不同氧化物层堆叠顺序的新型钠锂镁铝锰氧化物(NaLiMgAlMnO),即P2-NLMAMO和P3-NLMAMO。我们结合非原位硬X射线和软X射线吸收光谱技术,系统地研究和比较了不同电化学循环窗口下的电压衰减现象以及阳离子/阴离子氧化还原过程。结果清楚地表明,与P3型对应物相比,具有较低锰氧化还原程度的P2-NLMAMO电极易于实现优异的容量保持率和倍率性能,更重要的是,具有更高的平均电压。此外,当将P2-NLMAMO和P3-NLMAMO的放电截止电压提高到2.5 V时,在延长循环后平均放电电压的变化可忽略不计。这项独特的工作为基于阳离子和阴离子氧化还原化学在可控晶体结构排列下开发高容量P型层状阴极提供了一种有效策略,这可能会加深对NIBs晶体结构与电化学性能之间相关性的理解。