Suppr超能文献

基于实例推理在经导管主动脉瓣植入术中的相似性度量和属性选择。

Similarity measures and attribute selection for case-based reasoning in transcatheter aortic valve implantation.

机构信息

Univ Rennes, CHU Rennes, Inserm, LTSI-UMR 1099, Rennes, France.

Therenva, Rennes, France.

出版信息

PLoS One. 2020 Sep 3;15(9):e0238463. doi: 10.1371/journal.pone.0238463. eCollection 2020.

Abstract

In a clinical decision support system, the purpose of case-based reasoning is to help clinicians make convenient decisions for diagnoses or interventional gestures. Past experience, which is represented by a case-base of previous patients, is exploited to solve similar current problems using four steps-retrieve, reuse, revise, and retain. The proposed case-based reasoning has been focused on transcatheter aortic valve implantation to respond to clinical issues pertaining vascular access and prosthesis choices. The computation of a relevant similarity measure is an essential processing step employed to obtain a set of retrieved cases from a case-base. A hierarchical similarity measure that is based on a clinical decision tree is proposed to better integrate the clinical knowledge, especially in terms of case representation, case selection and attributes weighting. A case-base of 138 patients is used to evaluate the case-based reasoning performance, and retrieve- and reuse-based criteria have been considered. The sensitivity for the vascular access and the prosthesis choice is found to 0.88 and 0.94, respectively, with the use of the hierarchical similarity measure as opposed to 0.53 and 0.79 for the standard similarity measure. Ninety percent of the suggested solutions are correctly classified for the proposed metric when four cases are retrieved. Using a dedicated similarity measure, with relevant and weighted attributes selected through a clinical decision tree, the set of retrieved cases, and consequently, the decision suggested by the case-based reasoning are substantially improved over state-of-the-art similarity measures.

摘要

在临床决策支持系统中,基于案例推理的目的是帮助临床医生方便地做出诊断或干预决策。利用案例库中以前患者的经验,通过四个步骤——检索、重用、修改和保留来解决当前类似的问题。所提出的基于案例推理方法主要集中在经导管主动脉瓣植入术方面,以应对涉及血管入路和假体选择的临床问题。计算相关相似度度量是从案例库中获取一组检索案例的必要处理步骤。提出了一种基于临床决策树的分层相似度度量方法,以更好地整合临床知识,特别是在案例表示、案例选择和属性权重方面。使用 138 名患者的案例库来评估基于案例推理的性能,并考虑了检索和重用的标准。使用分层相似度度量时,血管入路和假体选择的灵敏度分别为 0.88 和 0.94,而使用标准相似度度量时分别为 0.53 和 0.79。当检索到四个案例时,建议的度量标准对 90%的建议解决方案进行了正确分类。使用专用相似度度量,通过临床决策树选择相关且加权的属性,检索到的案例集以及基于案例推理的建议决策得到了显著改善,超过了现有最先进的相似度度量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e5d/7470320/b17556db467a/pone.0238463.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验