Instituto de Ingeniería, Coordinación de Ingeniería Ambiental, Universidad Nacional Autónoma de México, 70-472, Coyoacán, 04510, Ciudad de México, Mexico.
Departamento de Ingeniería Química, Universidad de Sevilla, Facultad de Química, Calle Profesor García González 1, 41012, Sevilla, Spain.
J Environ Manage. 2020 Jun 1;263:110353. doi: 10.1016/j.jenvman.2020.110353. Epub 2020 Mar 26.
Nowadays, as the world population is in need of creating alternative materials that can replace conventional plastics, microalgae biomass may be identified as a viable source for producing more environmentally friendly materials. Scenedesmus sp and Desmodesmus sp are the main components (80%) of a microalgae consortium (MC) that first has been used to remove Nitrogen and Phosphorus from wastewater. The potential to develop bioplastic materials from MC considering its relatively high protein content (48%) has been assessed in the present manuscript, using as a reference a commercial biomass rich an Arthrospira specie (AM) also present in the studied consortium. Bioplastics were obtained through injection moulding of blends obtained after mixing with different amounts of glycerol, and eventually characterized using Dynamic Mechanical Thermal Analysis (DMTA), water immersion and tensile tests. All bioplastics displayed a glass transition temperature around 60 °C, showing a thermoplastic behavior which is less pronounced in the CM based bioplastics. This would imply a greater thermal resistance of bioplastics produced from the biomass harvested in wastewater. Moreover, these bioplastics showed a lower ability to absorb water when immersed, due to the lower deformability displayed in the tensile tests. The mechanical properties of all samples, independently of the nature of the biomass, were improved when the presence of the biomass was higher. Therefore, results here presented prove the potential of valorisation of microalgae consortia used in the effective treatment of wastewater through the development of bioplastic materials.
如今,随着世界人口需要创造可替代传统塑料的材料,微藻生物质可能被确定为生产更环保材料的可行来源。聚球藻属(Scenedesmus sp)和束丝藻属(Desmodesmus sp)是微藻联合体(MC)的主要成分(约 80%),该联合体最初用于从废水中去除氮和磷。本研究评估了从 MC 中开发生物塑料材料的潜力,因为它的蛋白质含量相对较高(约 48%),并以研究联合体中存在的商业富生物质蓝藻(AM)作为参考。生物塑料是通过在不同甘油含量下混合后注塑成型获得的,最终使用动态机械热分析(DMTA)、水浸泡和拉伸测试进行了表征。所有生物塑料的玻璃化转变温度约为 60°C,表现出热塑性行为,而基于 CM 的生物塑料的热塑性行为不太明显。这意味着从废水中收获的生物质生产的生物塑料具有更高的耐热性。此外,这些生物塑料在浸入水中时吸收水分的能力较低,因为在拉伸测试中显示出较低的变形性。所有样品的机械性能,无论生物质的性质如何,当生物质的存在更高时都会得到提高。因此,本研究结果证明了通过开发生物塑料材料来有效处理废水的微藻联合体的利用潜力。