Neurology Department and CIC 0004, Nantes University Hospital, Nantes, France.
Centre de Recherche en Transplantation et Immunologie, INSERM U1064, Nantes, France.
J Neurol. 2021 Feb;268(2):669-679. doi: 10.1007/s00415-020-10154-5. Epub 2020 Sep 9.
In relapsing-remitting multiple sclerosis (RRMS), relapse severity and residual disability are difficult to predict. Nevertheless, this information is crucial both for guiding relapse treatment strategies and for informing patients.
We, therefore, developed and validated a clinical-based model for predicting the risk of residual disability at 6 months post-relapse in MS.
We used the data of 186 patients with RRMS collected during the COPOUSEP multicentre trial. The outcome was an increase of ≥ 1 EDSS point 6 months post-relapse treatment. We used logistic regression with LASSO penalization to construct the model, and bootstrap cross-validation to internally validate it. The model was externally validated with an independent retrospective French single-centre cohort of 175 patients.
The predictive factors contained in the model were age > 40 years, shorter disease duration, EDSS increase ≥ 1.5 points at time of relapse, EDSS = 0 before relapse, proprioceptive ataxia, and absence of subjective sensory disorders. Discriminative accuracy was acceptable in both the internal (AUC 0.82, 95% CI [0.73, 0.91]) and external (AUC 0.71, 95% CI [0.62, 0.80]) validations.
The predictive model we developed should prove useful for adapting therapeutic strategy of relapse and follow-up to individual patients.
在复发缓解型多发性硬化症(RRMS)中,复发的严重程度和残留的残疾程度难以预测。然而,这些信息对于指导复发治疗策略和告知患者至关重要。
因此,我们开发并验证了一种基于临床的模型,用于预测 MS 患者复发后 6 个月残留残疾的风险。
我们使用了在 COPOUSEP 多中心试验中收集的 186 例 RRMS 患者的数据。结局是在复发后治疗的 6 个月内 EDSS 增加≥1 分。我们使用具有 LASSO 惩罚的逻辑回归来构建模型,并进行 Bootstrap 交叉验证进行内部验证。使用来自法国独立回顾性单中心的 175 例患者队列对模型进行外部验证。
模型中包含的预测因素为年龄>40 岁、病程较短、复发时 EDSS 增加≥1.5 分、复发前 EDSS=0、本体感觉性共济失调和无主观感觉障碍。在内部验证(AUC 0.82,95%CI [0.73,0.91])和外部验证(AUC 0.71,95%CI [0.62,0.80])中,该模型的判别准确性均可以接受。
我们开发的预测模型应有助于针对个体患者调整复发治疗策略和随访。