Suppr超能文献

温度跳跃二维红外光谱与强度调制连续波光加热。

Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating.

机构信息

Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Phys Chem B. 2020 Oct 1;124(39):8665-8677. doi: 10.1021/acs.jpcb.0c07177. Epub 2020 Sep 21.

Abstract

Pulsed temperature-jump (T-jump) spectroscopy with infrared (IR) detection has been widely used to study biophysical processes occurring from nanoseconds to ∼1 ms with structural sensitivity. However, many systems exhibit structural dynamics on time scales longer than the millisecond barrier that is set by the time scale for thermal relaxation of the sample. We developed a linear and nonlinear infrared spectrometer coupled to an intensity-modulated continuous wave (CW) laser to probe T-jump-initiated chemical reactions from <1 ms to seconds. Time-dependent modulation of the CW laser leads to a <1 ms heating time as well as a constant final temperature (±3%) for the duration of the heating time. Temperature changes of up to 75 °C in DO are demonstrated, allowing for nonequilibrium measurements inaccessible to standard pulsed optical T-jump setups. T-jump linear absorption, pump-probe, and two-dimensional IR (2D IR) spectroscopy are applied to the unfolding and refolding of ubiquitin and a model intercalated motif (i-motif) DNA sequence, and analysis of the observed signals is used to demonstrate the limits and utility of each method. Overall, the ability to probe temperature-induced chemical processes from <1 ms to many seconds with 2D IR spectroscopy provides multiple new avenues for time-dependent spectroscopy in chemistry and biophysics.

摘要

脉冲温度跳跃(T-jump)光谱学与红外(IR)检测相结合,已广泛用于研究从纳秒到约 1 毫秒的生物物理过程,具有结构敏感性。然而,许多系统表现出的结构动力学时间尺度超过了毫秒障碍,这是由样品热弛豫的时间尺度决定的。我们开发了一种线性和非线性红外光谱仪,与强度调制连续波(CW)激光耦合,以探测从<1 毫秒到秒的 T-jump 引发的化学反应。CW 激光的时变调制导致<1 毫秒的加热时间以及加热时间内的恒定最终温度(±3%)。在 DO 中证明了高达 75°C 的温度变化,这使得标准的脉冲光学 T-jump 装置无法进行非平衡测量。T-jump 线性吸收、泵浦探测和二维红外(2D IR)光谱学被应用于泛素和模型插入基序(i-motif)DNA 序列的展开和折叠,对观察到的信号进行分析,以证明每种方法的局限性和实用性。总的来说,用 2D IR 光谱学从<1 毫秒到许多秒探测温度诱导的化学过程的能力为化学和生物物理学中的时间相关光谱学提供了多个新途径。

相似文献

1
Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating.
J Phys Chem B. 2020 Oct 1;124(39):8665-8677. doi: 10.1021/acs.jpcb.0c07177. Epub 2020 Sep 21.
2
Transient two-dimensional IR spectrometer for probing nanosecond temperature-jump kinetics.
Rev Sci Instrum. 2007 Jun;78(6):063101. doi: 10.1063/1.2743168.
4
Transient 2D IR spectroscopy of ubiquitin unfolding dynamics.
Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14237-42. doi: 10.1073/pnas.0700959104. Epub 2007 Jun 5.
5
Laser induced temperature-jump time resolved IR spectroscopy of zeolites.
Chem Sci. 2024 Feb 7;15(10):3453-3465. doi: 10.1039/d3sc06128k. eCollection 2024 Mar 6.
6
Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 5;178:185-191. doi: 10.1016/j.saa.2017.01.069. Epub 2017 Feb 2.
7
Folding of a Zinc-Finger ββα-Motif Investigated Using Two-Dimensional and Time-Resolved Vibrational Spectroscopy.
J Phys Chem B. 2016 Nov 3;120(43):11151-11158. doi: 10.1021/acs.jpcb.6b08883. Epub 2016 Oct 21.
9
A novel dual mode X-band EPR resonator for rapid in situ microwave heating.
J Magn Reson. 2020 Jan;310:106644. doi: 10.1016/j.jmr.2019.106644. Epub 2019 Nov 13.
10
Conformational changes during the nanosecond-to-millisecond unfolding of ubiquitin.
Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):612-7. doi: 10.1073/pnas.0408646102. Epub 2005 Jan 3.

引用本文的文献

2
A Fluorescence-Based Temperature-Jump Apparatus for Illustrating Protein Dynamics on the Millisecond Time Scale.
Anal Chem. 2025 Feb 25;97(7):3810-3815. doi: 10.1021/acs.analchem.4c06501. Epub 2025 Feb 13.
3
Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light.
Front Bioeng Biotechnol. 2024 Oct 11;12:1324757. doi: 10.3389/fbioe.2024.1324757. eCollection 2024.
4
Laser induced temperature-jump time resolved IR spectroscopy of zeolites.
Chem Sci. 2024 Feb 7;15(10):3453-3465. doi: 10.1039/d3sc06128k. eCollection 2024 Mar 6.
5
Biomolecular infrared spectroscopy: making time for dynamics.
Chem Sci. 2023 Nov 28;15(2):414-430. doi: 10.1039/d3sc05223k. eCollection 2024 Jan 3.
6
Insights into nucleic acid helix formation from infrared spectroscopy.
Biophys J. 2024 Jan 16;123(2):115-117. doi: 10.1016/j.bpj.2023.12.017. Epub 2023 Dec 21.
7
Molecular insight into how the position of an abasic site modifies DNA duplex stability and dynamics.
Biophys J. 2024 Jan 16;123(2):118-133. doi: 10.1016/j.bpj.2023.11.022. Epub 2023 Nov 24.
8
Thermodynamics and kinetics of DNA and RNA dinucleotide hybridization to gaps and overhangs.
Biophys J. 2023 Aug 22;122(16):3323-3339. doi: 10.1016/j.bpj.2023.07.009. Epub 2023 Jul 19.
9
Increasing Pump-Probe Signal toward Asymptotic Limits.
J Phys Chem B. 2023 Jun 1;127(21):4694-4707. doi: 10.1021/acs.jpcb.3c01270. Epub 2023 May 18.

本文引用的文献

1
Studying biomolecular folding and binding using temperature-jump mass spectrometry.
Nat Commun. 2020 Jan 28;11(1):566. doi: 10.1038/s41467-019-14179-x.
2
Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA.
J Phys Chem B. 2020 Feb 20;124(7):1160-1174. doi: 10.1021/acs.jpcb.9b11511. Epub 2020 Feb 5.
3
Enhanced Sensitivity to Local Dynamics in Peptides by Use of Temperature-Jump IR Spectroscopy and Isotope Labeling.
Chemistry. 2020 Mar 18;26(16):3524-3534. doi: 10.1002/chem.201904497. Epub 2020 Feb 4.
4
Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme.
Nat Chem. 2019 Nov;11(11):1058-1066. doi: 10.1038/s41557-019-0329-3. Epub 2019 Sep 16.
5
Monitoring Base-Specific Dynamics during Melting of DNA-Ligand Complexes Using Temperature-Jump Time-Resolved Infrared Spectroscopy.
J Phys Chem B. 2019 Jul 25;123(29):6188-6199. doi: 10.1021/acs.jpcb.9b04354. Epub 2019 Jul 16.
6
Systematic investigation of sequence requirements for DNA i-motif formation.
Nucleic Acids Res. 2019 Mar 18;47(5):2177-2189. doi: 10.1093/nar/gkz046.
7
i-Motif DNA: structural features and significance to cell biology.
Nucleic Acids Res. 2018 Sep 19;46(16):8038-8056. doi: 10.1093/nar/gky735.
8
Direct Observation of Activated Kinetics and Downhill Dynamics in DNA Dehybridization.
J Phys Chem B. 2018 Mar 29;122(12):3088-3100. doi: 10.1021/acs.jpcb.8b01445. Epub 2018 Mar 21.
9
Sequence-Dependent Mechanism of DNA Oligonucleotide Dehybridization Resolved through Infrared Spectroscopy.
J Am Chem Soc. 2016 Sep 14;138(36):11792-801. doi: 10.1021/jacs.6b05854. Epub 2016 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验