Suppr超能文献

一种捕获气孔静止状态的保卫细胞脱落酸(ABA)网络模型。

A Guard Cell Abscisic Acid (ABA) Network Model That Captures the Stomatal Resting State.

作者信息

Maheshwari Parul, Assmann Sarah M, Albert Reka

机构信息

Department of Physics, Penn State University, University Park, PA, United States.

Department of Biology, Penn State University, University Park, PA, United States.

出版信息

Front Physiol. 2020 Aug 13;11:927. doi: 10.3389/fphys.2020.00927. eCollection 2020.

Abstract

Stomatal pores play a central role in the control of carbon assimilation and plant water status. The guard cell pair that borders each pore integrates information from environmental and endogenous signals and accordingly swells or deflates, thereby increasing or decreasing the stomatal aperture. Prior research shows that there is a complex cellular network underlying this process. We have previously constructed a signal transduction network and a Boolean dynamic model describing stomatal closure in response to signals including the plant hormone abscisic acid (ABA), calcium or reactive oxygen species (ROS). Here, we improve the Boolean network model such that it captures the biologically expected response of the guard cell in the absence or following the removal of a closure-inducing signal such as ABA or external Ca. The expectation from the biological system is reversibility, i.e., the stomata should reopen after the closing signal is removed. We find that the model's reversibility is obstructed by the previously assumed persistent activity of four nodes. By introducing time-dependent Boolean functions for these nodes, the model recapitulates stomatal reopening following the removal of a signal. The previous version of the model predicts ∼20% closure in the absence of any signal due to uncertainty regarding the initial conditions of multiple network nodes. We systematically test and adjust these initial conditions to find the minimally restrictive combinations that appropriately result in open stomata in the absence of a closure signal. We support these results by an analysis of the successive stabilization of feedback motifs in the network, illuminating the system's dynamic progression toward the open or closed stomata state. This analysis particularly highlights the role of cytosolic calcium oscillations in causing and maintaining stomatal closure. Overall, we illustrate the strength of the Boolean network modeling framework to efficiently capture cellular phenotypes as emergent outcomes of intracellular biological processes.

摘要

气孔在碳同化和植物水分状况的控制中起着核心作用。围绕每个气孔的一对保卫细胞整合来自环境和内源信号的信息,并相应地膨胀或收缩,从而增加或减小气孔孔径。先前的研究表明,这一过程背后存在一个复杂的细胞网络。我们之前构建了一个信号转导网络和一个布尔动态模型,用于描述气孔对包括植物激素脱落酸(ABA)、钙或活性氧(ROS)在内的信号的关闭反应。在这里,我们改进了布尔网络模型,使其能够捕捉保卫细胞在不存在或去除诸如ABA或外部钙等诱导关闭信号时的生物学预期反应。生物系统的预期是可逆性,即关闭信号去除后气孔应重新打开。我们发现,该模型的可逆性受到先前假设的四个节点的持续活性的阻碍。通过为这些节点引入时间相关的布尔函数,该模型概括了信号去除后气孔的重新打开。该模型的先前版本由于多个网络节点初始条件的不确定性,预测在没有任何信号的情况下约有20%的关闭率。我们系统地测试和调整这些初始条件,以找到在没有关闭信号时适当导致气孔开放的最小限制组合。我们通过对网络中反馈基序的连续稳定进行分析来支持这些结果,阐明系统向开放或关闭气孔状态的动态进展。该分析特别强调了胞质钙振荡在引起和维持气孔关闭中的作用。总体而言,我们展示了布尔网络建模框架在有效捕捉细胞表型作为细胞内生物学过程的涌现结果方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f18a/7438572/2b6ef0f4906f/fphys-11-00927-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验