Suppr超能文献

用于人类群体时空建模的活动序列生成与分类

Generation and Classification of Activity Sequences for Spatiotemporal Modeling of Human Populations.

作者信息

Lund Albert M, Gouripeddi Ramkiran, Facelli Julio C

出版信息

Online J Public Health Inform. 2020 Jul 30;12(1):e9. doi: 10.5210/ojphi.v12i1.10588. eCollection 2020.

Abstract

Human activity encompasses a series of complex spatiotemporal processes that are difficult to model but represent an essential component of human exposure assessment. A significant empirical data source, like the American Time Use Survey (ATUS), can be leveraged to model human activity. However, tractable models require a better stratification of activity data to inform about different, but classifiable groups of individuals, that exhibit similar activity sequences and mobility patterns. Using machine learning algorithms, we developed an unsupervised classification and sequence generation method that is capable of generating coherent and stochastic sequences of activity from the ATUS data. This classification, when combined with any spatiotemporal exposure profile, allows the development of stochastic models of exposure patterns and records for groups of individuals exhibiting similar activity behaviors.

摘要

人类活动包含一系列复杂的时空过程,这些过程难以建模,但却是人类暴露评估的重要组成部分。像美国时间使用调查(ATUS)这样重要的经验数据来源可用于对人类活动进行建模。然而,便于处理的模型需要对活动数据进行更好的分层,以便了解不同但可分类的个体群体,这些个体群体表现出相似的活动序列和移动模式。利用机器学习算法,我们开发了一种无监督分类和序列生成方法,该方法能够从ATUS数据中生成连贯的和随机的活动序列。这种分类与任何时空暴露概况相结合,能够为表现出相似活动行为的个体群体开发暴露模式和记录的随机模型。

相似文献

1
Generation and Classification of Activity Sequences for Spatiotemporal Modeling of Human Populations.
Online J Public Health Inform. 2020 Jul 30;12(1):e9. doi: 10.5210/ojphi.v12i1.10588. eCollection 2020.
3
Investigating the American Time Use Survey from an exposure modeling perspective.
J Expo Sci Environ Epidemiol. 2011 Jan-Feb;21(1):92-105. doi: 10.1038/jes.2009.60. Epub 2009 Dec 30.
4
Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2017 Apr;28(4):887-899. doi: 10.1109/TNNLS.2016.2612890. Epub 2016 Oct 6.
5
Learning from heterogeneous temporal data in electronic health records.
J Biomed Inform. 2017 Jan;65:105-119. doi: 10.1016/j.jbi.2016.11.006. Epub 2016 Dec 2.
6
Application of Whole-Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium.
Risk Anal. 2020 Sep;40(9):1693-1705. doi: 10.1111/risa.13510. Epub 2020 Jun 8.
8
The dynamic neural filter: a binary model of spatiotemporal coding.
Neural Comput. 2003 Feb;15(2):309-29. doi: 10.1162/089976603762552933.

引用本文的文献

1
Simulating patterns of life: More representative time-activity patterns that account for context.
Environ Int. 2023 Feb;172:107753. doi: 10.1016/j.envint.2023.107753. Epub 2023 Jan 16.
2
An LBS and agent-based simulator for Covid-19 research.
Sci Rep. 2022 Dec 8;12(1):21254. doi: 10.1038/s41598-022-25175-5.
3
Human activity pattern implications for modeling SARS-CoV-2 transmission.
Comput Methods Programs Biomed. 2021 Feb;199:105896. doi: 10.1016/j.cmpb.2020.105896. Epub 2020 Dec 8.
4
STHAM: an agent based model for simulating human exposure across high resolution spatiotemporal domains.
J Expo Sci Environ Epidemiol. 2020 May;30(3):459-468. doi: 10.1038/s41370-020-0216-4. Epub 2020 Mar 9.

本文引用的文献

1
STHAM: an agent based model for simulating human exposure across high resolution spatiotemporal domains.
J Expo Sci Environ Epidemiol. 2020 May;30(3):459-468. doi: 10.1038/s41370-020-0216-4. Epub 2020 Mar 9.
2
Geographic Imputation of Missing Activity Space Data from Ecological Momentary Assessment (EMA) GPS Positions.
Int J Environ Res Public Health. 2018 Dec 4;15(12):2740. doi: 10.3390/ijerph15122740.
3
Spatial and Temporal Dynamics in Air Pollution Exposure Assessment.
Int J Environ Res Public Health. 2018 Mar 20;15(3):558. doi: 10.3390/ijerph15030558.
5
Investigating the American Time Use Survey from an exposure modeling perspective.
J Expo Sci Environ Epidemiol. 2011 Jan-Feb;21(1):92-105. doi: 10.1038/jes.2009.60. Epub 2009 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验