Suppr超能文献

核受体化学报告物使在哺乳动物细胞中进行配体的结构域特异性分析成为可能。

Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells.

机构信息

Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States.

Departments of Immunology and Microbiology, Chemistry, Scripps Research, La Jolla, California 92037, United States.

出版信息

ACS Chem Biol. 2020 Sep 18;15(9):2324-2330. doi: 10.1021/acschembio.0c00432. Epub 2020 Sep 10.

Abstract

The characterization of specific metabolite-protein interactions is important in chemical biology and drug discovery. For example, nuclear receptors (NRs) are a family of ligand-activated transcription factors that regulate diverse physiological processes in animals and are key targets for therapeutic development. However, the identification and characterization of physiological ligands for many NRs remains challenging, because of limitations in domain-specific analysis of ligand binding in cells. To address these limitations, we developed a domain-specific covalent chemical reporter for peroxisome proliferator-activated receptors (PPARs) and demonstrated its utility to screen and characterize the potency of candidate NR ligands in live cells. These studies demonstrate targeted and domain-specific chemical reporters provide excellent tools to evaluate endogenous and exogenous (diet, microbiota, therapeutics) ligands of PPARs in mammalian cells, as well as additional protein targets for further investigation.

摘要

特定代谢物-蛋白质相互作用的特征在化学生物学和药物发现中很重要。例如,核受体 (NRs) 是一类配体激活的转录因子,它们调节动物体内的多种生理过程,是治疗开发的关键靶点。然而,由于细胞内配体结合的特定域分析存在局限性,许多 NRs 的生理配体的鉴定和特征描述仍然具有挑战性。为了解决这些限制,我们开发了一种针对过氧化物酶体增殖物激活受体 (PPARs) 的特定域共价化学报告物,并证明其可用于筛选和表征活细胞中候选 NR 配体的效力。这些研究表明,靶向和特定域的化学报告物为评估哺乳动物细胞中 PPARs 的内源性和外源性(饮食、微生物群、治疗剂)配体以及其他蛋白质靶标提供了极好的工具,可进一步进行研究。

相似文献

1
Nuclear Receptor Chemical Reporter Enables Domain-Specific Analysis of Ligands in Mammalian Cells.
ACS Chem Biol. 2020 Sep 18;15(9):2324-2330. doi: 10.1021/acschembio.0c00432. Epub 2020 Sep 10.
2
An update about the crucial role of stereochemistry on the effects of Peroxisome Proliferator-Activated Receptor ligands.
Eur J Med Chem. 2019 Aug 15;176:326-342. doi: 10.1016/j.ejmech.2019.05.012. Epub 2019 May 11.
4
Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications.
Eur J Med Chem. 2019 Mar 15;166:502-513. doi: 10.1016/j.ejmech.2019.01.067. Epub 2019 Feb 1.
5
Control of peroxisome proliferator-activated receptor fate by the ubiquitinproteasome system.
J Recept Signal Transduct Res. 2006;26(5-6):679-92. doi: 10.1080/10799890600928202.
7
International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors.
Pharmacol Rev. 2006 Dec;58(4):726-41. doi: 10.1124/pr.58.4.5.
8
Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism.
Fundam Clin Pharmacol. 2007 Jun;21(3):231-44. doi: 10.1111/j.1472-8206.2007.00486.x.
9
[Endogenous ligands for PPARs].
Nihon Rinsho. 2005 Apr;63(4):578-83.
10
Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators.
Biochim Biophys Acta. 2007 Aug;1771(8):915-25. doi: 10.1016/j.bbalip.2007.01.007. Epub 2007 Jan 18.

引用本文的文献

2
Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future.
Drug Metab Dispos. 2023 Feb;51(2):219-227. doi: 10.1124/dmd.122.000860. Epub 2022 Oct 2.
3
4-Iodopyrimidine Labeling Reveals Nuclear Translocation and Nuclease Activity for Both MIF and MIF2.
Chemistry. 2022 Jan 3;28(1):e202103030. doi: 10.1002/chem.202103030. Epub 2021 Nov 22.
4
Targeted and proteome-wide analysis of metabolite-protein interactions.
Curr Opin Chem Biol. 2020 Feb;54:19-27. doi: 10.1016/j.cbpa.2019.10.008. Epub 2019 Nov 29.

本文引用的文献

1
A Photoaffinity-Based Fragment-Screening Platform for Efficient Identification of Protein Ligands.
Angew Chem Int Ed Engl. 2020 Nov 16;59(47):21096-21105. doi: 10.1002/anie.202008361. Epub 2020 Sep 7.
2
Importance of Quantifying Drug-Target Engagement in Cells.
ACS Med Chem Lett. 2020 Mar 6;11(4):403-406. doi: 10.1021/acsmedchemlett.9b00570. eCollection 2020 Apr 9.
3
Structure-based view of the druggable genome.
Drug Discov Today. 2020 Mar;25(3):561-567. doi: 10.1016/j.drudis.2020.02.006. Epub 2020 Feb 19.
4
Tunable Heteroaromatic Sulfones Enhance in-Cell Cysteine Profiling.
J Am Chem Soc. 2020 Jan 29;142(4):1801-1810. doi: 10.1021/jacs.9b08831. Epub 2020 Jan 13.
5
Bile acid metabolites control T17 and T cell differentiation.
Nature. 2019 Dec;576(7785):143-148. doi: 10.1038/s41586-019-1785-z. Epub 2019 Nov 27.
6
Construction of ligand assay systems by protein-based semisynthetic biosensors.
Curr Opin Chem Biol. 2019 Jun;50:10-18. doi: 10.1016/j.cbpa.2019.02.011. Epub 2019 Mar 12.
7
Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.
Nat Med. 2018 Dec;24(12):1919-1929. doi: 10.1038/s41591-018-0222-4. Epub 2018 Nov 5.
8
Mechanistic elucidation guided by covalent inhibitors for the development of anti-diabetic PPARγ ligands.
Chem Sci. 2016 Aug 1;7(8):5523-5529. doi: 10.1039/c6sc01279e. Epub 2016 May 13.
9
Cysteine-reactive probes and their use in chemical proteomics.
Chem Commun (Camb). 2018 May 1;54(36):4501-4512. doi: 10.1039/c8cc01485j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验