Suppr超能文献

通过实施 LFMM 势,推进药物发现中金属酶的自由能计算。

Advancing Free-Energy Calculations of Metalloenzymes in Drug Discovery via Implementation of LFMM Potentials.

机构信息

Schrodinger, Inc., 120 West 45th Street, New York, New York 10036, United States.

D.E. Shaw India Private Ltd., Plot No. 573, Jubilee Hills, Hyderabad, Telangana 500096, India.

出版信息

J Chem Theory Comput. 2020 Nov 10;16(11):6926-6937. doi: 10.1021/acs.jctc.0c00615. Epub 2020 Oct 8.

Abstract

To address some of the inherent challenges in modeling metalloenzymes, we here report an extension to the functional form of the OPLS3e force field to include terms adopted from the ligand field molecular mechanics (LFMM) model, including the angular overlap and Morse potential terms. The integration of these terms with OPLS3e, herein referred to as OPLS3e+M, improves the description of metal-ligand interactions and provides accurate relative binding energies and geometric preferences of transition-metal complexes by training to gas-phase density functional theory (DFT) energies. For [Cu(HO)], OPLS3e+M significantly improves HO binding energies and the geometric preference of the tetra-aqua Cu complex. In addition, we conduct free-energy perturbation calculations on two pharmaceutically relevant metalloenzyme targets, which include chemical modifications at varying proximity to the binding-site metals, including changes to the metal-binding moiety of the ligand itself. The extensions made to OPLS3e lead to accurate predicted relative binding free energies for these series (mean unsigned error of 1.29 kcal mol). Our results provide evidence that integration of the LFMM model with OPLS3e can be utilized to predict thermodynamic quantities for such systems near chemical accuracy. With these improvements, we anticipate that robust free-energy perturbation calculations can be employed to accelerate the drug development efforts for metalloenzyme targets.

摘要

为了解决金属酶建模中的一些固有挑战,我们在此报告对 OPLS3e 力场的功能形式进行扩展,纳入来自配体场分子力学 (LFMM) 模型的项,包括角度重叠和 Morse 势能项。这些项与 OPLS3e 的整合,在此称为 OPLS3e+M,通过训练到气相密度泛函理论 (DFT) 能量,改善了金属-配体相互作用的描述,并提供了过渡金属配合物准确的相对结合能和几何偏好。对于 [Cu(HO)],OPLS3e+M 显著提高了 HO 的结合能和四水合 Cu 配合物的几何偏好。此外,我们对两个具有药物相关性的金属酶靶标进行自由能微扰计算,其中包括在接近结合部位金属的不同位置进行化学修饰,包括改变配体本身的金属结合部分。对 OPLS3e 的扩展导致这些系列的相对结合自由能得到准确预测(平均未签名误差为 1.29 kcal/mol)。我们的结果表明,LFMM 模型与 OPLS3e 的整合可用于预测此类接近化学精度的系统的热力学量。有了这些改进,我们预计可以采用稳健的自由能微扰计算来加速金属酶靶标的药物开发工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验