Suppr超能文献

新型Src 抑制剂的鉴定:基于药效团的虚拟筛选、分子对接和分子动力学模拟。

Identification of Novel Src Inhibitors: Pharmacophore-Based Virtual Screening, Molecular Docking and Molecular Dynamics Simulations.

机构信息

School of Pharmacy, China Medical University, Shenyang 110122, China.

出版信息

Molecules. 2020 Sep 8;25(18):4094. doi: 10.3390/molecules25184094.

Abstract

Src plays a crucial role in many signaling pathways and contributes to a variety of cancers. Therefore, Src has long been considered an attractive drug target in oncology. However, the development of Src inhibitors with selectivity and novelty has been challenging. In the present study, pharmacophore-based virtual screening and molecular docking were carried out to identify potential Src inhibitors. A total of 891 molecules were obtained after pharmacophore-based virtual screening, and 10 molecules with high docking scores and strong interactions were selected as potential active molecules for further study. Absorption, distribution, metabolism, elimination and toxicity (ADMET) property evaluation was used to ascertain the drug-like properties of the obtained molecules. The proposed inhibitor-protein complexes were further subjected to molecular dynamics (MD) simulations involving root-mean-square deviation and root-mean-square fluctuation to explore the binding mode stability inside active pockets. Finally, two molecules (ZINC3214460 and ZINC1380384) were obtained as potential lead compounds against Src kinase. All these analyses provide a reference for the further development of novel Src inhibitors.

摘要

Src 在许多信号通路中发挥着关键作用,并与多种癌症有关。因此,Src 长期以来一直被认为是肿瘤学中一个有吸引力的药物靶点。然而,开发具有选择性和新颖性的 Src 抑制剂一直具有挑战性。在本研究中,我们进行了基于药效团的虚拟筛选和分子对接,以鉴定潜在的 Src 抑制剂。经过基于药效团的虚拟筛选后,共获得了 891 个分子,选择了 10 个具有高对接得分和强相互作用的分子作为进一步研究的潜在活性分子。我们还使用吸收、分布、代谢、排泄和毒性 (ADMET) 性质评估来确定获得的分子的类药性。所提出的抑制剂-蛋白复合物进一步进行了分子动力学 (MD) 模拟,包括均方根偏差和均方根波动,以探索活性口袋内的结合模式稳定性。最后,获得了两个(ZINC3214460 和 ZINC1380384)作为针对 Src 激酶的潜在先导化合物。所有这些分析为进一步开发新型 Src 抑制剂提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972e/7571137/5e280c8cd60b/molecules-25-04094-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验