Suppr超能文献

在大肠杆菌全细胞系统中表达多个赖氨酸环脒酶提高哌可酸产量。

Enhancement of pipecolic acid production by the expression of multiple lysine cyclodeaminase in the Escherichia coli whole-cell system.

机构信息

Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.

Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.

出版信息

Enzyme Microb Technol. 2020 Oct;140:109643. doi: 10.1016/j.enzmictec.2020.109643. Epub 2020 Aug 6.

Abstract

Pipecolic acid, a non-proteinogenic amino acid, is a metabolite in lysine metabolism and a key chiral precursor in local anesthesia and macrolide antibiotics. To replace the environmentally unfriendly chemical production or preparation procedure of pipecolic acid, many biological synthetic routes have been studied for a long time. Among them, synthesis by lysine cyclodeaminase (LCD), encoded by pipA, has several advantages, including stability of enzyme activity and NAD self-regeneration. Thus, we selected this enzyme for pipecolic acid biosynthesis in a whole-cell bioconversion. To construct a robust pipecolic acid production system, we investigated important conditions including expression vector, strain, culture conditions, and other reaction parameters. The most important factor was the introduction of multiple pipA genes into the whole-cell system. As a result, we produced 724 mM pipecolic acid (72.4 % conversion), and the productivity was 0.78 g/L/h from 1 M l-lysine after 5 days. This is the highest production reported to date.

摘要

哌可酸是一种非蛋白氨基酸,是赖氨酸代谢的一种代谢物,也是局部麻醉剂和大环内酯类抗生素的关键手性前体。为了取代哌可酸的化学法生产或制备工艺,人们长期以来一直在研究许多生物合成途径。其中,由 pipA 编码的赖氨酸环脱氨酶(LCD)合成具有几个优点,包括酶活性和 NAD 自我再生的稳定性。因此,我们选择了这种酶用于全细胞生物转化中的哌可酸生物合成。为了构建一个稳健的哌可酸生产系统,我们研究了包括表达载体、菌株、培养条件和其他反应参数在内的重要条件。最重要的因素是将多个 pipA 基因引入全细胞系统。结果,我们从 1 M l-赖氨酸生产了 724 mM 的哌可酸(72.4%转化率),在 5 天后的产率为 0.78 g/L/h。这是迄今为止报道的最高产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验