Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Department of Chemistry and Physical Sciences, Nicholls State University, P.O. Box 2022, Thibodaux, Louisiana 70310, United States.
ACS Chem Neurosci. 2020 Oct 7;11(19):3025-3035. doi: 10.1021/acschemneuro.0c00338. Epub 2020 Sep 28.
Amyloid transthyretin (ATTR) amyloidosis is a widespread and fatal systemic amyloidosis characterized by the misfolding and amyloid aggregation of transthyretin (TTR). Studies suggest that dissociation of the TTR tetramer is the key step for its misfolding. Because of the importance of tetramer dissociation on ATTR amyloidosis, many TTR stabilizers have been discovered to stabilize the tetramer structure. This paper describes the application conventional molecular dynamics and metadynamics simulations to investigate the binding and unbinding mechanisms of two TTR stabilizers, including AG10 and tafamidis. AG10 has been granted an orphan drug designation by the U.S. Food and Drug Administration (FDA), and tafamidis was the first FDA-approved treatment for ATTR cardiomyopathy. The conventional molecular dynamics simulations reveal that both AG10 and tafamidis can stabilize the TTR tetramer through different mechanisms. AG10 stabilizes TTR tetramer by forming H-bonds with S117 to mimic the protective effect of T119M. Tafamidis stabilizes the tetramer by forming H-bond with S52 in the flexible CD loop to increase its structural stability. Despite the strong binding affinity of tafamidis, the free-energy surface constructed from metadynamics simulation suggests that tafamidis unbinds more readily than AG10 with lower free-energy barriers between the binding state and other intermediates. Finally, by performing pharmacophore analysis, we found two common important moieties of the studied compounds for their binding on the pockets, which can provide valuable guidance for future lead compounds' optimization in designing drugs for ATTR amyloidosis.
淀粉样变转甲状腺素蛋白(ATTR)淀粉样变性是一种广泛存在且致命的系统性淀粉样变性疾病,其特征是转甲状腺素蛋白(TTR)的错误折叠和淀粉样聚集。研究表明,TTR 四聚体的解离是其错误折叠的关键步骤。由于四聚体解离对 ATTR 淀粉样变性的重要性,已经发现许多 TTR 稳定剂来稳定四聚体结构。本文描述了使用传统分子动力学和元动力学模拟来研究两种 TTR 稳定剂(包括 AG10 和 tafamidis)的结合和解离机制。AG10 已被美国食品和药物管理局(FDA)授予孤儿药指定,tafamidis 是第一个获得 FDA 批准用于治疗 ATTR 心肌病的药物。传统分子动力学模拟表明,AG10 和 tafamidis 都可以通过不同的机制稳定 TTR 四聚体。AG10 通过与 S117 形成氢键来稳定 TTR 四聚体,模拟 T119M 的保护作用。Tafamidis 通过与柔性 CD 环中的 S52 形成氢键来稳定四聚体,从而增加其结构稳定性。尽管 tafamidis 具有很强的结合亲和力,但元动力学模拟构建的自由能表面表明,tafamidis 比 AG10 更容易解结合,结合状态和其他中间体之间的自由能障碍较低。最后,通过进行药效团分析,我们发现研究化合物结合口袋的两个常见重要部分,这可为设计用于治疗 ATTR 淀粉样变性的药物的先导化合物优化提供有价值的指导。