Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093.
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24274-24284. doi: 10.1073/pnas.2010635117. Epub 2020 Sep 11.
Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a "divide-and-conquer" approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.
富含脯氨酸结构域(PRD)是真核生物中最普遍的信号模块之一,但由于其异源重组表达存在很大困难,因此常被生物物理技术所忽略。我们采用“分而治之”的方法,详细研究了一种属于人类蛋白 ALIX 的 PRD(166 个残基;约 30%脯氨酸),ALIX 是一种多功能衔接蛋白,参与包括 ESCRT 介导的膜重塑、细胞黏附和细胞凋亡在内的重要细胞过程。在溶液中,ALIX-PRD 的 N 端片段是动态无序的。它包含三个串联的类似富含脯氨酸的基序,这些基序竞争其信号伙伴 TSG101-UEV 上的单一结合位点,这一点可以通过异核 NMR 光谱来证明。通过测量 TSG101-UEV 浓度的弛豫色散数据的全局拟合,可以精确地定量这些相互作用。与可溶性 N 端部分不同,ALIX-PRD 的 C 端富含酪氨酸的片段形成淀粉样纤维和粘性凝胶,这一点通过与淀粉样探针刚果红和硫代黄素 T(ThT)的染料结合测定以及透射电子显微镜来验证。值得注意的是,纤维在低温(2 至 6°C)下或用Src 激酶进行过度磷酸化时会溶解。用 ThT 荧光监测的聚集动力学表明,电荷排斥决定了磷酸化介导的纤维溶解,而疏水性效应则驱动纤维形成。这些数据阐明了 ALIX-PRD 与 TSG101-UEV 的相互作用以及 ALIX-PRD 聚合及其在调节 ALIX 功能中的核心作用之间的机制相互作用。本研究还展示了 PRD 的广泛功能谱,并揭示了翻译后修饰对可逆淀粉样蛋白的调节作用。