Mahale Pratibha, Moradifar Parivash, Cheng Hiu Yan, Nova Nabila Nabi, Grede Alex J, Lee Byeongdu, De Jesús Luis R, Wetherington Maxwell, Giebink Noel C, Badding John V, Alem Nasim, Mallouk Thomas E
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Department of Material Science and Engineering & Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2020 Oct 27;14(10):12810-12818. doi: 10.1021/acsnano.0c03559. Epub 2020 Sep 17.
Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale. To eliminate surface oxidation, we developed a core-shell synthesis in which the Ge metalattice is protected by an oxide-free Si interfacial layer, and we explore its properties by transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The interstices of a colloidal crystal film grown from 69 nm diameter spherical silica particles were filled with polycrystalline Ge by high-pressure confined chemical vapor deposition (HPcCVD) from GeH. After the SiO template was etched away with aqueous HF, the Ge replica was uniformly coated with an amorphous Si shell by HPcCVD as confirmed by TEM-EDS (energy-dispersive X-ray spectroscopy) and Raman spectroscopy. Formation of the shell prevents oxidation of the Ge core within the detection limit of XPS. The electronic properties of the core-shell structure were studied by accessing the Ge 3d edge onset using STEM-EELS. A blue shift in the edge onset with decreasing size of Ge sites in the metalattices suggests quantum confinement of the Ge core. The degree of quantum confinement of the Ge core depends on the void sizes in the template, which is tunable by using silica particles of varying size. The edge onset also shows a shift to higher energy near the shell in comparison with the Ge core. This shift along with the observation of Ge-Si vibrational modes in the Raman spectrum indicate interdiffusion of Ge and Si. Both the size of the voids in the template and core-shell interdiffusion of Si and Ge can in principle be tuned to modify the electronic properties of the Ge metalattice.
金属晶格是均匀粒子的晶体阵列,其中晶体的周期接近材料的某些特征物理长度尺度。在这里,我们探索了一种锗金属晶格的合成与性质,其中二氧化硅胶体晶体模板的约70纳米周期性接近纳米晶锗复制品的约24纳米玻尔激子半径。由于纳米尺度下高的表面积与体积比,在探索量子限制效应或设计电子耦合纳米结构时,锗表面氧化问题可能很严重。为了消除表面氧化,我们开发了一种核壳合成方法,其中锗金属晶格由无氧化物的硅界面层保护,并且我们通过透射电子显微镜(TEM)、拉曼光谱和电子能量损失谱(EELS)来探索其性质。由直径69纳米的球形二氧化硅颗粒生长而成的胶体晶体膜的间隙通过来自GeH₄的高压受限化学气相沉积(HPcCVD)用多晶锗填充。在用氢氟酸水溶液蚀刻掉SiO₂模板后,通过TEM-EDS(能量色散X射线光谱)和拉曼光谱证实,锗复制品通过HPcCVD被非晶硅壳均匀包覆。壳的形成在XPS的检测限内防止了锗核的氧化。通过使用STEM-EELS研究核壳结构的电子性质,通过获取锗3d边缘起始位置来进行。随着金属晶格中锗位点尺寸减小,边缘起始位置出现蓝移,这表明锗核存在量子限制。锗核的量子限制程度取决于模板中的空隙尺寸,通过使用不同尺寸的二氧化硅颗粒可以对其进行调节。与锗核相比,边缘起始位置在靠近壳的地方也向更高能量移动。这种移动以及拉曼光谱中锗 - 硅振动模式的观察表明锗和硅发生了相互扩散。原则上,模板中的空隙尺寸以及硅和锗的核壳相互扩散都可以进行调节,以改变锗金属晶格的电子性质。