Suppr超能文献

大流行期间关键资源规划的最小化和自适应数值策略。

Minimal and adaptive numerical strategy for critical resource planning in a pandemic.

机构信息

Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India.

VNIR Biotechnologies Pvt Ltd, Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, India.

出版信息

Phys Rev E. 2020 Aug;102(2-1):021301. doi: 10.1103/PhysRevE.102.021301.

Abstract

Current epidemiological models can in principle model the temporal evolution of a pandemic. However, any such model will rely on parameters that are unknown, which in practice are estimated using stochastic and poorly measured quantities. As a result, an early prediction of the long-term evolution of a pandemic will quickly lose relevance, while a late model will be too late to be useful for disaster management. Unless a model is designed to be adaptive, it is bound either to lose relevance over time, or lose trust and thus not have a second chance for retraining. We propose a strategy for estimating the number of infections and the number of deaths, that does away with time-series modeling, and instead makes use of a "phase portrait approach." We demonstrate that, with this approach, there is a universality to the evolution of the disease across countries, that can then be used to make reliable predictions. These same models can also be used to plan the requirements for critical resources during the pandemic. The approach is designed for simplicity of interpretation, and adaptivity over time. Using our model, we predict the number of infections and deaths in Italy and New York State, based on an adaptive algorithm which uses early available data, and show that our predictions closely match the actual outcomes. We also carry out a similar exercise for India, where in addition to projecting the number of infections and deaths, we also project the expected range of critical resource requirements for hospitalizations in a location.

摘要

目前的流行病学模型原则上可以模拟大流行的时间演变。然而,任何此类模型都将依赖于未知的参数,而这些参数实际上是使用随机和测量精度较差的量来估计的。因此,对大流行的长期演变的早期预测将很快失去相关性,而晚期模型对于灾害管理将为时已晚。除非模型被设计为自适应的,否则它要么随着时间的推移失去相关性,要么失去信任,从而没有第二次重新训练的机会。我们提出了一种估计感染人数和死亡人数的策略,该策略摒弃了时间序列建模,而是利用了“相图方法”。我们证明,通过这种方法,疾病在各国之间的演变具有普遍性,从而可以进行可靠的预测。这些相同的模型也可用于规划大流行期间关键资源的需求。该方法旨在实现解释的简单性和随时间的适应性。使用我们的模型,我们根据使用早期可用数据的自适应算法,预测了意大利和纽约州的感染人数和死亡人数,并表明我们的预测与实际结果非常吻合。我们还对印度进行了类似的研究,除了预测感染人数和死亡人数外,我们还预测了特定地点住院所需关键资源的预期范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验