Suppr超能文献

具有不精确标签信息的高光谱图像的稳健动态分类器选择方法。

A Robust Dynamic Classifier Selection Approach for Hyperspectral Images with Imprecise Label Information.

机构信息

GAIM, Department of Telecommunications and Information Processing, Ghent University, 9000 Gent, Belgium.

FLip, Department of Electronics and Information Systems, Ghent University, 9052 Gent, Belgium.

出版信息

Sensors (Basel). 2020 Sep 15;20(18):5262. doi: 10.3390/s20185262.

Abstract

Supervised hyperspectral image (HSI) classification relies on accurate label information. However, it is not always possible to collect perfectly accurate labels for training samples. This motivates the development of classifiers that are sufficiently robust to some reasonable amounts of errors in data labels. Despite the growing importance of this aspect, it has not been sufficiently studied in the literature yet. In this paper, we analyze the effect of erroneous sample labels on probability distributions of the principal components of HSIs, and provide in this way a statistical analysis of the resulting uncertainty in classifiers. Building on the theory of imprecise probabilities, we develop a novel robust dynamic classifier selection (R-DCS) model for data classification with erroneous labels. Particularly, spectral and spatial features are extracted from HSIs to construct two individual classifiers for the dynamic selection, respectively. The proposed R-DCS model is based on the robustness of the classifiers' predictions: the extent to which a classifier can be altered without changing its prediction. We provide three possible selection strategies for the proposed model with different computational complexities and apply them on three benchmark data sets. Experimental results demonstrate that the proposed model outperforms the individual classifiers it selects from and is more robust to errors in labels compared to widely adopted approaches.

摘要

监督高光谱图像 (HSI) 分类依赖于准确的标签信息。然而,对于训练样本来说,并不总是能够收集到完全准确的标签。这就促使我们开发出足够鲁棒的分类器,使其能够容忍数据标签中一定程度的误差。尽管这方面的重要性日益增加,但在文献中尚未得到充分研究。在本文中,我们分析了错误样本标签对 HSI 主成分概率分布的影响,并通过这种方式对分类器中的不确定性进行了统计分析。基于不精确概率理论,我们为带有错误标签的数据分类开发了一种新颖的鲁棒动态分类器选择 (R-DCS) 模型。特别是,从 HSIs 中提取光谱和空间特征,分别构建两个单独的分类器用于动态选择。所提出的 R-DCS 模型基于分类器预测的稳健性:分类器在不改变其预测的情况下可以改变的程度。我们为所提出的模型提供了三种可能的选择策略,它们具有不同的计算复杂度,并将它们应用于三个基准数据集上。实验结果表明,与所选择的单个分类器相比,所提出的模型表现更好,并且与广泛采用的方法相比,对标签错误更具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa12/7570993/aa10e7cd0198/sensors-20-05262-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验