Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
Division of Hematology/Oncology, University of Arizona Medical Center, Tucson, Arizona.
Cancer Res. 2020 Nov 1;80(21):4805-4814. doi: 10.1158/0008-5472.CAN-20-1742. Epub 2020 Sep 17.
is the most commonly deleted gene in prostate cancer and is a gatekeeper suppressor. is haploinsufficient, and pathogenic reduction in protein levels may result from genetic loss, decreased transcription, and increased protein degradation caused by inflammation or PTEN loss. NKX3.1 acts by retarding proliferation, activating antioxidants, and enhancing DNA repair. DYRK1B-mediated phosphorylation at serine 185 of NKX3.1 leads to its polyubiquitination and proteasomal degradation. Because NKX3.1 protein levels are reduced, but never entirely lost, in prostate adenocarcinoma, enhancement of NKX3.1 protein levels represents a potential therapeutic strategy. As a proof of principle, we used CRISPR/Cas9-mediated editing to engineer a point mutation in murine to code for a serine to alanine missense at amino acid 186, the target for Dyrk1b phosphorylation. , and mice were analyzed over one year to determine the levels of Nkx3.1 expression and effects of the mutant protein on the prostate. Allelic loss of caused reduced levels of Nkx3.1 protein, increased proliferation, and prostate hyperplasia and dysplasia, whereas mouse prostates had increased levels of Nkx3.1 protein, reduced prostate size, normal histology, reduced proliferation, and increased DNA end labeling. At 2 months of age, when all mice had normal prostate histology, mice demonstrated indices of metabolic activation, DNA damage response, and stress response. These data suggest that modulation of Nkx3.1 levels alone can exert long-term control over premalignant changes and susceptibility to DNA damage in the prostate. SIGNIFICANCE: These findings show that prolonging the half-life of Nkx3.1 reduces proliferation, enhances DNA end-labeling, and protects from DNA damage, ultimately blocking the proneoplastic effects of allelic loss.
是前列腺癌中最常缺失的基因,也是一个看门抑制因子。是杂合子不足的,蛋白质水平的致病减少可能是由于遗传丢失、转录减少以及炎症或 PTEN 丢失引起的蛋白质降解造成的。NKX3.1 通过减缓增殖、激活抗氧化剂和增强 DNA 修复来发挥作用。DYRK1B 介导的 NKX3.1 丝氨酸 185 位磷酸化导致其多泛素化和蛋白酶体降解。由于 NKX3.1 蛋白水平在前列腺腺癌中降低,但从未完全丢失,因此增强 NKX3.1 蛋白水平代表了一种潜在的治疗策略。作为原理的证明,我们使用 CRISPR/Cas9 介导的编辑在 中设计了一个点突变,该突变在氨基酸 186 处编码丝氨酸到丙氨酸的错义突变,这是 Dyrk1b 磷酸化的靶点。对 NKX3.1 表达水平和突变蛋白对前列腺的影响进行了超过一年的分析。 等位基因丢失导致 NKX3.1 蛋白水平降低,增殖增加,前列腺增生和发育不良,而 小鼠的前列腺 NKX3.1 蛋白水平增加,前列腺体积减小,组织学正常,增殖减少,DNA 末端标记增加。在 2 个月大时,当所有小鼠的前列腺组织学均正常时, 小鼠表现出代谢激活、DNA 损伤反应和应激反应的指标。这些数据表明,单独调节 NKX3.1 水平可以对前列腺中的癌前变化和对 DNA 损伤的易感性进行长期控制。意义:这些发现表明延长 NKX3.1 的半衰期可降低增殖,增强 DNA 末端标记,并防止 DNA 损伤,最终阻断 等位基因丢失的致癌作用。