Wang Yanchao, Xu Meiling, Yang Liuxiang, Yan Bingmin, Qin Qin, Shao Xuecheng, Zhang Yunwei, Huang Dajian, Lin Xiaohuan, Lv Jian, Zhang Dongzhou, Gou Huiyang, Mao Ho-Kwang, Chen Changfeng, Ma Yanming
State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China.
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China.
Nat Commun. 2020 Sep 17;11(1):4702. doi: 10.1038/s41467-020-18541-2.
High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO by reaction of CaO and O at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO by geologically abundant mineral precursors at various depths in Earth's mantle.
高压能够极大地改变化学键,并产生有悖于传统认知的奇特化合物。尤其重要的是与地球内部氧循环相关的化合物,它们是理解影响地球生命赖以生存的环境的重大地质事件的关键。在此,我们报告发现了压力稳定的二价臭氧化物CaO晶体,其展现出引人注目的键合和氧化态,具有深远的地质意义。我们的计算研究通过在高温高压条件下使CaO与O反应确定了CaO的一个晶相;随后的实验在金刚石对顶砧池中利用激光加热在压缩状态下合成了这种稀有化合物。高压X射线衍射数据表明,CaO晶体在35吉帕斯卡的压力下形成,减压至20吉帕斯卡时仍能保持。电荷态分析显示CaO中臭氧阴离子的形式氧化态为-2。这些发现揭示了高压下的臭氧化物化学,并为阐明地球内部显著的地震异常和氧循环提供了见解。我们进一步预测了在地幔不同深度由地质上丰富的矿物前驱体产生CaO的多种反应。