Suppr超能文献

机器学习模型对单型和双型电致变色器件性能的比较

Comparison of Machine Learning Models on Performance of Single- and Dual-Type Electrochromic Devices.

作者信息

Gok Elif Ceren, Yildirim Murat Onur, Eren Esin, Oksuz Aysegul Uygun

机构信息

Department of Industrial Engineering, Engineering Faculty, Suleyman Demirel University, 32260 Isparta, Turkey.

Department of Energy Technologies, Innovative Technologies Application and Research Center, Suleyman Demirel University, 32260 Isparta, Turkey.

出版信息

ACS Omega. 2020 Aug 31;5(36):23257-23267. doi: 10.1021/acsomega.0c03048. eCollection 2020 Sep 15.

Abstract

This study shows that the model fitting based on machine learning (ML) from experimental data can successfully predict the electrochromic characteristics of single- and dual-type flexible electrochromic devices (ECDs) by using tungsten trioxide (WO) and WO/vanadium pentoxide (VO), respectively. Seven different regression methods were used for experimental observations, which belong to single and dual ECDs where 80% percent was used as training data and the remaining was taken as testing data. Among the seven different regression methods, -nearest neighbor (KNN) achieves the best results with higher coefficient of determination ( ) score and lower root-mean-squared error (RMSE) for the bleaching state of ECDs. Furthermore, higher score and lower RMSE for the coloration state of ECDs were achieved with Gaussian process regressor. The robustness result of the ML modeling demonstrates the reliability of prediction outcomes. These results can be proposed as promising models for different energy-saving flexible electronic systems.

摘要

本研究表明,基于机器学习(ML)从实验数据进行的模型拟合,通过分别使用三氧化钨(WO)和WO/五氧化二钒(VO),能够成功预测单型和双型柔性电致变色器件(ECD)的电致变色特性。七种不同的回归方法用于实验观测,这些实验观测属于单型和双型ECD,其中80%用作训练数据,其余用作测试数据。在七种不同的回归方法中,K近邻(KNN)对于ECD的漂白状态,以较高的决定系数( )得分和较低的均方根误差(RMSE)取得了最佳结果。此外,高斯过程回归器对于ECD的着色状态取得了较高的 得分和较低的RMSE。ML建模的稳健性结果证明了预测结果具有可靠性。这些结果可作为不同节能柔性电子系统的有前景的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17f0/7495761/864002da13be/ao0c03048_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验