The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine.
Regeneron Pharmaceuticals, Tarrytown, NY (A.S.).
Circ Res. 2020 Dec 4;127(12):1536-1548. doi: 10.1161/CIRCRESAHA.120.317349. Epub 2020 Sep 23.
FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (Na) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Na availability in knockout () mice predisposes to abnormal excitability at the tissue level are not well defined.
Using animal models and theoretical multicellular linear strands, we examined how FHF2 orchestrates the interdependency of sodium, calcium, and gap junctional conductances to safeguard cardiac conduction.
mice were challenged by reducing calcium conductance (gCa) using verapamil or by reducing gap junctional conductance (Gj) using carbenoxolone or by backcrossing into a cardiomyocyte-specific Cx43 (connexin 43) heterozygous background. All conditions produced conduction block in mice, with wild-type () mice showing normal impulse propagation. To explore the ionic mechanisms of block in hearts, multicellular linear strand models incorporating FHF2-deficient Na inactivation properties were constructed and faithfully recapitulated conduction abnormalities seen in mutant hearts. The mechanisms of conduction block in mutant strands with reduced gCa or diminished Gj are very different. Enhanced Na inactivation due to FHF2 deficiency shifts dependence onto calcium current (I) to sustain electrotonic driving force, axial current flow, and action potential (AP) generation from cell-to-cell. In the setting of diminished Gj, slower charging time from upstream cells conspires with accelerated Na inactivation in mutant strands to prevent sufficient downstream cell charging for AP propagation.
FHF2-dependent effects on Na inactivation ensure adequate sodium current (I) reserve to safeguard against numerous threats to reliable cardiac impulse propagation.
成纤维细胞生长因子同源因子(fibroblast growth factor homologous factors,FHFs)是钠离子通道(sodium channel,Na)失活的关键调节因子。这些关键蛋白的突变与人类疾病有关,包括 Brugada 综合征、特发性室性心律失常和癫痫性脑病。在 knockout() 小鼠中,Na 可用性降低导致组织水平异常兴奋的潜在离子机制尚未得到很好的定义。
使用动物模型和理论上的多细胞线性链,我们研究了 FHF2 如何协调钠、钙和缝隙连接电导的相互依存关系,以保护心脏传导。
通过使用维拉帕米降低钙电导(gCa)、使用 carbenoxolone 降低缝隙连接电导(Gj)或通过回交到心肌细胞特异性 Cx43(连接蛋白 43)杂合背景,对小鼠进行了挑战。所有条件均导致小鼠传导阻滞,而野生型(WT)小鼠显示正常冲动传播。为了探索突变心脏中阻滞的离子机制,构建了包含 FHF2 缺陷型 Na 失活特性的多细胞线性链模型,并忠实地再现了突变心脏中观察到的传导异常。具有降低的 gCa 或减少的 Gj 的突变链中的传导阻滞机制非常不同。由于 FHF2 缺乏导致的 Na 失活增强会使依赖性转移到钙电流(I)上,以维持电紧张驱动力、轴向电流流动和动作电位(AP)从细胞到细胞的产生。在 Gj 减少的情况下,来自上游细胞的充电时间较慢与突变链中 Na 失活加速相结合,防止下游细胞足够充电以进行 AP 传播。
FHF2 对 Na 失活的影响确保了足够的钠电流(I)储备,以防止可靠的心脏冲动传播受到多种威胁。