Suppr超能文献

使用 SOS 算法估计 5 型马斯京根模型的非线性参数。

Estimation of nonlinear parameters of the type 5 Muskingum model using SOS algorithm.

作者信息

Khalifeh Saeid, Esmaili Kazem, Khodashenas Saeed Reza, Khalifeh Vahid

机构信息

Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

Department of Water science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

MethodsX. 2020 Aug 22;7:101040. doi: 10.1016/j.mex.2020.101040. eCollection 2020.

Abstract

The Symbiotic Organisms Search Algorithm (SOS) is used as an algorithm based on the social behavior of Symbiotic Organisms in optimization of Non-linear 5 model parameters for flood routing. The data used in this article is 4 day observations from 30 November 2008 to 3 December 2008, which is located between the Molasani, and Ahwaz station on the Karun River. The time series data used included river inflow, storage volume, and river outflow. The results of the developed model with the Symbiotic Organisms Search Algorithm (SOS) were compared with the other Evolutionary algorithms including Genetic Algorithm (GA, and Harmony Search Algorithm (HS). The analysis showed that the best solutions achieved from the objective function by the SOS, GA, and HS algorithms were 143052.02, 143252.35, and 142952.45, respectively. The processes of these datasets determined that the SOS algorithm was premiere to GA, and HS algorithms on the optimal flood routing river problem.•In this article applied the Symbiotic Organisms Search Algorithm for Estimation of nonlinear parameters of the Muskingum hydrologic model of the Karun River located in Iran.•This method can be useful for managers of water, and wastewater companies, water resource facilities for predicting the flood process downstream of the rivers.•The present algorithm performs better than the other algorithms in the discussion of the optimization of Nonlinear 5 parameters of Muskingum model in flood routing.

摘要

共生生物搜索算法(SOS)被用作一种基于共生生物社会行为的算法,用于优化洪水演进的非线性5模型参数。本文使用的数据是2008年11月30日至2008年12月3日的4天观测数据,位于卡伦河上的莫拉萨尼站和阿瓦士站之间。所使用的时间序列数据包括河流入流量、蓄水量和河流出流量。将使用共生生物搜索算法(SOS)开发的模型结果与其他进化算法进行了比较,包括遗传算法(GA)和和声搜索算法(HS)。分析表明,SOS、GA和HS算法从目标函数中获得的最佳解分别为143052.02、143252.35和142952.45。这些数据集的处理过程确定,在最优洪水演进河流问题上,SOS算法优于GA和HS算法。

•本文应用共生生物搜索算法来估计伊朗卡伦河马斯京根水文模型的非线性参数。

•这种方法对于水和污水处理公司的管理人员、水资源设施预测河流下游洪水过程可能是有用的。

•在洪水演进中马斯京根模型的非线性5参数优化讨论中,当前算法比其他算法表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验