Sivchik Vasily, Kochetov Aleksandr, Eskelinen Toni, Kisel Kristina S, Solomatina Anastasia I, Grachova Elena V, Tunik Sergey P, Hirva Pipsa, Koshevoy Igor O
Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland.
Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia.
Chemistry. 2021 Jan 21;27(5):1787-1794. doi: 10.1002/chem.202003952. Epub 2020 Dec 27.
Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC F as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC F has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC F .
含有氰化物配体的发光环金属化配合物[M(C^N^N)CN](M = Pt、Pd;HC^N^N = 吡啶基 - (M = Pt 1、Pd 5)、苄基三唑基 - (M = Pt 2)、吲唑基 - (M = Pt 3、Pd 6)、吡唑基 - 苯基吡啶(M = Pt 4)),已被探索用作亲核结构单元,以碘化氰(ICF)作为卤键(XB)供体来构建卤键加合物。氰基的负静电势为铂配合物1 - 3提供了CN⋅⋅⋅I非共价相互作用;根据量子拓扑原子分析(QTAIM),卤键接触的能量与亲金属键合的能量相当。将发色团单元嵌入到XB加合物1 - 3⋅⋅⋅ICF中对电荷分布影响不大,但强烈影响Pt⋅⋅⋅Pt键合和π堆积,这导致了金属 - 金属到配体电荷转移(MMLCT)起源的激发态。这些态的能量和晶体材料的光发射性质主要由发光体通过金属 - 金属相互作用的聚集程度决定。加合物的形成取决于金属的性质和金属化配体的结构,其变化可以产生动态的卤键支持体系,以热调节转变3↔3⋅⋅⋅ICF为例。