Professor Gregorio Fernández-Ballester. Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández , Alicante, Spain.
Expert Opin Ther Targets. 2020 Nov;24(11):1079-1097. doi: 10.1080/14728222.2020.1820987. Epub 2020 Sep 24.
A myriad of cellular pathophysiological responses are mediated by polymodal ion channels that respond to chemical and physical stimuli such as thermoTRP channels. Intriguingly, these channels are pivotal therapeutic targets with limited clinical pharmacology. methods offer an unprecedented opportunity for discovering new lead compounds targeting thermoTRP channels with improved pharmacological activity and therapeutic index.
This article reviews the progress on thermoTRP channel pharmacology because of (i) advances in solving their atomic structure using cryo-electron microscopy and, (ii) progress on computational techniques including homology modeling, molecular docking, virtual screening, molecular dynamics, ADME/Tox and artificial intelligence. Together, they have increased the number of lead compounds with clinical potential to treat a variety of pathologies. We used original and review articles from Pubmed (1997-2020), as well as the clinicaltrials.gov database, containing the terms thermoTRP, artificial intelligence, docking, and molecular dynamics.
The atomic structure of thermoTRP channels along with computational methods constitute a realistic first line strategy for designing drug candidates with improved pharmacology and clinical translation. approaches can also help predict potential side-effects that can limit clinical development of drug candidates. Together, they should provide drug candidates with upgraded therapeutic properties.
多模式离子通道介导了无数的细胞病理生理反应,这些通道对化学和物理刺激(如热 TRP 通道)做出反应。有趣的是,这些通道是具有有限临床药理学的重要治疗靶点。方法为发现针对热 TRP 通道的新先导化合物提供了前所未有的机会,这些先导化合物具有改善的药理学活性和治疗指数。
本文综述了热 TRP 通道药理学的进展,原因是 (i) 使用冷冻电子显微镜解决其原子结构方面的进展,以及 (ii) 计算技术(包括同源建模、分子对接、虚拟筛选、分子动力学、ADME/Tox 和人工智能)的进展。这些技术一起增加了具有临床潜力的治疗各种病理的先导化合物数量。我们使用了来自 Pubmed(1997-2020 年)的原始和综述文章,以及包含术语“thermoTRP”、“人工智能”、“对接”和“分子动力学”的 clinicaltrials.gov 数据库。
热 TRP 通道的原子结构以及计算方法构成了设计具有改善药理学和临床转化的药物候选物的现实第一线策略。这些方法还可以帮助预测可能限制候选药物临床开发的潜在副作用。它们共同为候选药物提供了升级的治疗特性。