Suppr超能文献

从理论角度深入理解离子在溶液中的特殊离子效应和酸碱强弱规则:从第一性原理推导出溶剂亲合性匹配规律。

Theoretical Insights into Specific Ion Effects and Strong-Weak Acid-Base Rules for Ions in Solution: Deriving the Law of Matching Solvent Affinities from First Principles.

机构信息

Department of Chemistry, University of Florida, Gainesville, FL, 32603, USA.

Institut für Computerphysik, Universität Stuttgart, 70569, Stuttgart, Germany.

出版信息

Chemphyschem. 2020 Dec 2;21(23):2605-2617. doi: 10.1002/cphc.202000644. Epub 2020 Nov 10.

Abstract

We present a detailed study of specific ion effects, volcano plots and the law of matching solvent affinities by means of a conceptual density functional theory (DFT) approach. Our results highlight that specific ion effects and the corresponding implications on the solvation energy are mainly due to differences in the electric chemical potentials and chemical hardnesses of the ions and the solvent. Our approach can be further used to identify reliable criteria for the validity of the law of matching solvent affinities. Basic expressions are derived, which allow us to study the limiting conditions for this empirical observation with regard to matching chemical reactivity indices. Moreover, we show that chaotropic and kosmotropic concepts and their implications for the stability of ion pairs are directly related to a generalized strong and weak acids and bases (SWAB) principle for ions in solution, which is also applicable to rationalize the shape of volcano plots for different solvents. In contrast to previous assumptions, all empirical findings can be explained by the properties of local solvent-ion complexes which dominate the specific global behavior of ion pairs in solution.

摘要

我们通过概念密度泛函理论(DFT)方法对特定离子效应、火山图以及溶剂亲和力匹配规律进行了详细研究。结果表明,特定离子效应以及对溶剂化能的相应影响主要归因于离子和溶剂的电化学势和化学硬度的差异。我们的方法可进一步用于确定溶剂亲和力匹配规律有效性的可靠标准。推导出了基本表达式,使我们能够根据匹配化学反应性指数来研究这种经验观察的极限条件。此外,我们表明,离解能和反离解能的概念及其对离子对稳定性的影响与溶液中离子的广义酸碱(SWAB)原理直接相关,该原理也可用于合理化不同溶剂的火山图形状。与先前的假设相反,所有经验发现都可以用局部溶剂-离子配合物的性质来解释,这些配合物主导着溶液中离子对的特定整体行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4241/7756232/0a87aad71c18/CPHC-21-2605-g001.jpg

相似文献

2
Volcano Plots Emerge from a Sea of Nonaqueous Solvents: The Law of Matching Water Affinities Extends to All Solvents.
ACS Cent Sci. 2018 Aug 22;4(8):1056-1064. doi: 10.1021/acscentsci.8b00348. Epub 2018 Jul 25.
3
Specific Ion Effects and the Law of Matching Solvent Affinities: A Conceptual Density Functional Theory Approach.
J Phys Chem B. 2020 Mar 19;124(11):2191-2197. doi: 10.1021/acs.jpcb.9b10886. Epub 2020 Mar 11.
4
Application of Fundamental Chemical Principles for Solvation Effects: A Unified Perspective for Interaction Patterns in Solution.
J Phys Chem B. 2022 Nov 3;126(43):8864-8872. doi: 10.1021/acs.jpcb.2c06315. Epub 2022 Oct 21.
6
Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.
J Phys Chem B. 2013 Dec 12;117(49):15306-12. doi: 10.1021/jp4033854. Epub 2013 Aug 9.
7
Molecular understanding of ion specificity at the peptide bond.
Phys Chem Chem Phys. 2015 Feb 7;17(5):3241-9. doi: 10.1039/c4cp04055d.
8
Ion pairing in protic ionic liquids probed by far-infrared spectroscopy: effects of solvent polarity and temperature.
Chemphyschem. 2014 Aug 25;15(12):2604-9. doi: 10.1002/cphc.201402205. Epub 2014 Jun 12.
9
Dynamical Dimension to the Hofmeister Series: Insights from First-Principles Simulations.
Chemphyschem. 2016 Apr 18;17(8):1166-73. doi: 10.1002/cphc.201501150. Epub 2016 Feb 11.
10
The many-body expansion for aqueous systems revisited: III. Hofmeister ion-water interactions.
Phys Chem Chem Phys. 2021 May 21;23(19):11196-11210. doi: 10.1039/d1cp00409c. Epub 2021 Apr 26.

引用本文的文献

1
2
Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents.
J Am Chem Soc. 2021 Sep 8;143(35):14158-14168. doi: 10.1021/jacs.1c04781. Epub 2021 Aug 30.

本文引用的文献

1
Specific Ion Effects and the Law of Matching Solvent Affinities: A Conceptual Density Functional Theory Approach.
J Phys Chem B. 2020 Mar 19;124(11):2191-2197. doi: 10.1021/acs.jpcb.9b10886. Epub 2020 Mar 11.
2
Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents?
Phys Chem Chem Phys. 2019 Jun 21;21(23):12279-12287. doi: 10.1039/c9cp01440c. Epub 2019 May 29.
4
Aqueous Mixtures of Urea and Trimethylamine-N-oxide: Evidence for Kosmotropic or Chaotropic Behavior?
J Phys Chem B. 2019 May 23;123(20):4415-4424. doi: 10.1021/acs.jpcb.9b02598. Epub 2019 May 13.
5
Note: Maximum hardness and minimum electrophilicity principles.
J Chem Phys. 2018 May 21;148(19):196101. doi: 10.1063/1.5033964.
6
Volcano Plots Emerge from a Sea of Nonaqueous Solvents: The Law of Matching Water Affinities Extends to All Solvents.
ACS Cent Sci. 2018 Aug 22;4(8):1056-1064. doi: 10.1021/acscentsci.8b00348. Epub 2018 Jul 25.
8
Elementary Derivation of the "|Δμ| Big Is Good" Rule.
J Phys Chem Lett. 2018 Aug 2;9(15):4344-4348. doi: 10.1021/acs.jpclett.8b01312. Epub 2018 Jul 20.
10
Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents.
J Chem Phys. 2018 Jun 14;148(22):222805. doi: 10.1063/1.5017278.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验