Lenarčič Zala, Alberton Ori, Rosch Achim, Altman Ehud
Department of Physics, University of California, Berkeley, California 94720, USA.
Institute for Theoretical Physics, University of Cologne, D-50937 Cologne, Germany.
Phys Rev Lett. 2020 Sep 11;125(11):116601. doi: 10.1103/PhysRevLett.125.116601.
Coupling a many-body localized system to a thermal bath breaks local conservation laws and washes out signatures of localization. When the bath is nonthermal or when the system is also weakly driven, local conserved quantities acquire a highly nonthermal stationary value. We demonstrate how this property can be used to study the many-body localization phase transition in weakly open systems. Here, the strength of the coupling to the nonthermal baths plays a similar role as a finite temperature in a T=0 quantum phase transition. By tuning this parameter, we can detect key features of the many-body localization (MBL) transition: the divergence of the dynamical exponent due to Griffiths effects in one dimension and the critical disorder strength. We apply these ideas to study the MBL critical point numerically. The possibility to observe critical signatures of the MBL transition in an open system allows for new numerical approaches that overcome the limitations of exact diagonalization studies. Here, we propose a scalable numerical scheme to study the MBL critical point using matrix-product operator solution to the Lindblad equation.
将多体局域化系统与热库耦合会破坏局部守恒定律并消除局域化特征。当热库是非热的或者系统也受到弱驱动时,局部守恒量会获得一个高度非热的稳态值。我们展示了如何利用这一特性来研究弱开放系统中的多体局域化相变。在这里,与非热库的耦合强度在(T = 0)量子相变中起到了类似于有限温度的作用。通过调整这个参数,我们可以检测多体局域化(MBL)相变的关键特征:由于一维中的格里菲斯效应导致的动力学指数发散以及临界无序强度。我们应用这些想法对MBL临界点进行数值研究。在开放系统中观察MBL相变临界特征的可能性允许采用新的数值方法,这些方法克服了精确对角化研究的局限性。在这里,我们提出了一种可扩展的数值方案,使用林德布拉德方程的矩阵乘积算符解来研究MBL临界点。