Suppr超能文献

基于图卷积网络的多标签零样本学习。

Multi-label zero-shot learning with graph convolutional networks.

机构信息

School of Software, Shandong University, Jinan, China; College of Computer and Information Sciences, Southwest University, Chongqing, China.

School of Software, Shandong University, Jinan, China; College of Computer and Information Sciences, Southwest University, Chongqing, China; CEMSE, King Abdullah University of Science and Technology, Thuwal, SA, Saudi Arabia.

出版信息

Neural Netw. 2020 Dec;132:333-341. doi: 10.1016/j.neunet.2020.09.010. Epub 2020 Sep 21.

Abstract

The goal of zero-shot learning (ZSL) is to build a classifier that recognizes novel categories with no corresponding annotated training data. The typical routine is to transfer knowledge from seen classes to unseen ones by learning a visual-semantic embedding. Existing multi-label zero-shot learning approaches either ignore correlations among labels, suffer from large label combinations, or learn the embedding using only local or global visual features. In this paper, we propose a Graph Convolution Networks based Multi-label Zero-Shot Learning model, abbreviated as MZSL-GCN. Our model first constructs a label relation graph using label co-occurrences and compensates the absence of unseen labels in the training phase by semantic similarity. It then takes the graph and the word embedding of each seen (unseen) label as inputs to the GCN to learn the label semantic embedding, and to obtain a set of inter-dependent object classifiers. MZSL-GCN simultaneously trains another attention network to learn compatible local and global visual features of objects with respect to the classifiers, and thus makes the whole network end-to-end trainable. In addition, the use of unlabeled training data can reduce the bias toward seen labels and boost the generalization ability. Experimental results on benchmark datasets show that our MZSL-GCN competes with state-of-the-art approaches.

摘要

零样本学习(ZSL)的目标是构建一个分类器,该分类器可以在没有相应注释训练数据的情况下识别新类别。典型的方法是通过学习视觉语义嵌入来将知识从可见类别转移到不可见类别。现有的多标签零样本学习方法要么忽略标签之间的相关性,要么受到大标签组合的影响,要么仅使用局部或全局视觉特征来学习嵌入。在本文中,我们提出了一种基于图卷积网络的多标签零样本学习模型,简称 MZSL-GCN。我们的模型首先使用标签共现构建标签关系图,并在训练阶段通过语义相似性来补偿看不见标签的缺失。然后,它将图和每个可见(不可见)标签的词嵌入作为输入传递给 GCN,以学习标签语义嵌入,并获得一组相互依赖的目标分类器。MZSL-GCN 同时训练另一个注意力网络,以学习与分类器相对应的对象的兼容局部和全局视觉特征,从而使整个网络能够端到端训练。此外,使用未标记的训练数据可以减少对可见标签的偏见并提高泛化能力。在基准数据集上的实验结果表明,我们的 MZSL-GCN 与最先进的方法相竞争。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验