Suppr超能文献

基于术前临床特征的桥本甲状腺炎合并甲状腺乳头状癌中央淋巴结转移预测的列线图模型。

A nomogram model based on the preoperative clinical characteristics of papillary thyroid carcinoma with Hashimoto's thyroiditis to predict central lymph node metastasis.

机构信息

Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Clin Endocrinol (Oxf). 2021 Feb;94(2):310-321. doi: 10.1111/cen.14302. Epub 2020 Sep 14.

Abstract

OBJECTIVE

Preoperative prediction of central lymph node (LN) metastasis in papillary thyroid carcinoma (PTC) with Hashimoto's thyroiditis (HT) provides an important basis for surgical decision-making, especially regarding the extent of tumour resection. We aimed to develop and validate a nomogram model for the preoperative assessment of central LN metastasis.

METHODS

We retrospectively collected the data of 994 PTC patients with HT who underwent surgery at the West China Hospital from January 2008 to December 2017. Among them, 606 patients who underwent surgeries relatively earlier comprised the training cohort for nomogram development, while the other 388 who underwent surgeries relatively later formed the validation cohort to validate the model's performance. Univariate and multivariate logistic regression analyses were conducted using the data of the two respective cohorts, as well as the data of the combined cohort. The relevant preoperative potential risk factors include demographic characteristics, medical history information, thyroid function test, ultrasound characteristics and BRAF V600E gene detection. A nomogram model was subsequently developed. The performance, discrimination and calibration of the nomogram model were assessed in the training and validation cohorts and in the combined cohort.

RESULTS

The central LN metastasis rate of PTC with HT was 49.7% (301/606) and 48.7% (193/388) in the training and validation cohorts, respectively. The univariate and multivariate logistic regression analyses indicated that younger age, normal body mass index, BRAF V600E mutation, larger maximum diameter, left lobe tumour, aspect ratio >1, capsular invasion and calcification were significant risk factors for central LN metastasis in PTC patients with HT. The preoperative nomogram showed good calibration and discrimination for the training and validation cohorts, as well as for the combined data set.

CONCLUSION

The nomogram we developed and validated with a comprehensive set of preoperative factors is effective in predicting central LN metastasis in PTC patients with HT.

摘要

目的

桥本甲状腺炎(HT)合并甲状腺乳头状癌(PTC)患者术前中央区淋巴结(LN)转移的预测,为手术决策提供了重要依据,尤其是肿瘤切除范围。本研究旨在建立并验证一种术前评估中央区 LN 转移的列线图模型。

方法

回顾性收集 2008 年 1 月至 2017 年 12 月在我院行手术治疗的 994 例 HT 合并 PTC 患者的临床资料。其中 606 例较早行手术治疗的患者被纳入列线图模型构建的训练集,另外 388 例较晚行手术治疗的患者被纳入验证集。应用单因素和多因素逻辑回归分析对两组患者的资料及两组合并的资料进行分析,筛选出与中央区 LN 转移相关的术前潜在危险因素,包括患者的一般资料、病史信息、甲状腺功能检查、超声特征及 BRAF V600E 基因突变情况。建立列线图模型,在训练集、验证集及合并数据集上对该模型的效能、区分度和校准度进行评估。

结果

训练集和验证集中 HT 合并 PTC 患者的中央区 LN 转移率分别为 49.7%(301/606)和 48.7%(193/388)。单因素和多因素逻辑回归分析结果提示,年龄较小、体质量指数正常、BRAF V600E 基因突变、肿瘤最大直径较大、肿瘤位于左侧、纵横比>1、包膜侵犯、微钙化是 HT 合并 PTC 患者发生中央区 LN 转移的独立危险因素。术前列线图模型在训练集、验证集及合并数据集上的校准度和区分度均较好。

结论

本研究构建并验证了一套包含多种术前因素的列线图模型,能够有效地预测 HT 合并 PTC 患者中央区 LN 转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验