Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Anal Chem. 2020 Nov 3;92(21):14550-14557. doi: 10.1021/acs.analchem.0c02752. Epub 2020 Oct 12.
Herein, a novel single-enzyme-assisted dual recycle amplification strategy based on T7 exonuclease (T7 Exo) and a strand-displacement reaction (SDR) was designed to fabricate a photoelectrochemical (PEC) biosensor for sensitive microRNA-141 (miRNA-141) detection with the use of laminar bismuth tungstate (BiWO) as photoactive material. Compared with a traditional enzyme-assisted dual recycle amplification strategy, the presented method could effectively refrain the enzyme interference reaction, reduce environmental sensitivity, and save cost. Here, hairpin DNA1 (H1) decorated on magnetic beads (MB) hybridized with target miRNA-141 to form an H1/miRNA-141 heteroduplex. With the introduction of hairpin DNA2 (H2)-labeled SiO (H2-SiO), SDR was triggered between H2-SiO and H1, thus miRNA-141 was displaced from the H1/miRNA-141 heteroduplex and an H1/H2-SiO duplex was formed, realizing the reuse of the target. In the presence of T7 Exo, the H1/H2-SiO duplex was digested with the release of output DNA-SiO. To enhance the target conversion rate, H1-MB was intactly released and cycled, which could initiate more T7 Exo digestion and free abundant output DNA-SiO. Through such a process, a tiny miRNA-141 could induce substantial output DNA-SiO, effectively improving the target amplification efficiency and detection sensitivity of a PEC biosensor. Furthermore, BiWO was modified on an electrode to provide a superior initial PEC signal due to its excellent electronic transformation capacity. With the introduction of output DNA-SiO, the hairpin structure of H3 on the electrode was opened, making SiO close to the electrode surface, which significantly decreases the PEC signal. This work first established the PEC biosensor featuring a single-enzyme-assisted dual recycle amplification process for sensitive detection of biomarkers.
本文设计了一种基于 T7 外切酶(T7 Exo)和链置换反应(SDR)的新型单酶辅助双循环扩增策略,以层状钨酸铋(BiWO)为光活性材料,制备用于灵敏检测 microRNA-141(miRNA-141)的光电化学(PEC)生物传感器。与传统的酶辅助双循环扩增策略相比,该方法可以有效地抑制酶干扰反应,降低环境敏感性,节约成本。在这里,修饰在磁性珠(MB)上的发夹 DNA1(H1)与靶 miRNA-141杂交形成 H1/miRNA-141 异源双链体。随着带有发夹 DNA2(H2)标记的 SiO(H2-SiO)的引入,H2-SiO 和 H1 之间触发了 SDR,从而使 miRNA-141 从 H1/miRNA-141 异源双链体中置换出来,并形成 H1/H2-SiO 双链体,实现了靶标的再利用。在 T7 Exo 的存在下,H1/H2-SiO 双链体被消化,同时释放输出 DNA-SiO。为了提高目标转化率,H1-MB 被完整地释放并循环,这可以引发更多的 T7 Exo 消化并释放丰富的输出 DNA-SiO。通过这样的过程,一个微小的 miRNA-141 可以诱导大量的输出 DNA-SiO,从而有效地提高了 PEC 生物传感器的目标扩增效率和检测灵敏度。此外,BiWO 被修饰在电极上,由于其优异的电子转化能力,提供了优异的初始 PEC 信号。随着输出 DNA-SiO 的引入,电极上 H3 的发夹结构被打开,使 SiO 靠近电极表面,这显著降低了 PEC 信号。这项工作首次建立了基于单酶辅助双循环放大过程的 PEC 生物传感器,用于灵敏检测生物标志物。