Suppr超能文献

PMO:一种面向精准医学的知识表示模型。

PMO: A knowledge representation model towards precision medicine.

作者信息

Hou Li, Wu Meng, Kang Hong Yu, Zheng Si, Shen Liu, Qian Qing, Li Jiao

机构信息

Institute of Medical Information/Library, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China.

出版信息

Math Biosci Eng. 2020 Jun 8;17(4):4098-4114. doi: 10.3934/mbe.2020227.

Abstract

With the rapid development of biomedical technology, amounts of data in the field of precision medicine (PM) are growing exponentially. Valuable knowledge is included in scattered data in which meaningful biomedical entities and their semantic relationships are buried. Therefore, it is necessary to develop a knowledge representation model like ontology to formally represent the relationships among diseases, phenotypes, genes, mutations, drugs, etc. and achieve effective integration of heterogeneous data. On basis of existing work, our study focus on solving the following issues: (i) Selecting the primary entities in PM domain; (ii) collecting and integrating biomedical vocabularies related to the above entities; (iii) defining and normalizing semantic relationships among these entities. We proposed a semi-automated method which improved the original Ontology Development 101 method to build the Precision Medicine Ontology (PMO), including defining the scope of the PMO according to the definition of PM, collecting terms from different biomedical resources, integrating and normalizing the terms by a combination of machine and manual work, defining the annotation properties, reusing existing ontologies and taxonomies, defining semantic relationships, evaluating PMO and creating the PMO website. Finally, the Precision Medicine Vocabulary (PMV) contains 4.53 million terms collected from 62 biomedical vocabularies, and the PMO includes eleven branches of PM concepts such as disease, chemical and drug, phenotype, gene, mutation, gene product and cell, described by 93 semantic relationships among them. PMO is an open, extensible ontology of PM, all of the terms and relationships in which could be obtained from the PMO website (http://www.phoc.org.cn/pmo/). Compared to existing project, our work has brought a broader and deeper coverage of mutation, gene and gene product, which enriches the semantic type and vocabulary in PM domain and benefits all users in terms of medical literature annotation, text mining and knowledge base construction.

摘要

随着生物医学技术的快速发展,精准医学(PM)领域的数据量呈指数级增长。有价值的知识包含在分散的数据中,其中有意义的生物医学实体及其语义关系被埋没。因此,有必要开发一种像本体这样的知识表示模型,以正式表示疾病、表型、基因、突变、药物等之间的关系,并实现异构数据的有效整合。在现有工作的基础上,我们的研究重点解决以下问题:(i)选择PM领域的主要实体;(ii)收集和整合与上述实体相关的生物医学词汇;(iii)定义和规范这些实体之间的语义关系。我们提出了一种半自动方法,改进了原始的本体开发101方法来构建精准医学本体(PMO),包括根据PM的定义定义PMO的范围,从不同的生物医学资源中收集术语,通过机器和人工相结合的方式对术语进行整合和规范,定义注释属性,重用现有的本体和分类法,定义语义关系,评估PMO并创建PMO网站。最后,精准医学词汇表(PMV)包含从62个生物医学词汇表中收集的453万个术语,PMO包括疾病、化学和药物、表型、基因、突变、基因产物和细胞等PM概念的11个分支,由它们之间的93种语义关系描述。PMO是一个开放的、可扩展的PM本体,其中所有的术语和关系都可以从PMO网站(http://www.phoc.org.cn/pmo/)获得。与现有项目相比,我们的工作在突变、基因和基因产物方面具有更广泛和深入的覆盖范围,丰富了PM领域的语义类型和词汇,有利于医学文献注释、文本挖掘和知识库建设等方面的所有用户。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验