Suppr超能文献

手牵手:衰老和克隆性造血的内在和外在驱动因素。

Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis.

机构信息

The Jackson Laboratory, Bar Harbor, ME.

The Jackson Laboratory, Bar Harbor, ME.

出版信息

Exp Hematol. 2020 Nov;91:1-9. doi: 10.1016/j.exphem.2020.09.197. Epub 2020 Sep 28.

Abstract

Over the past 25 years, the importance of hematopoietic stem cell (HSC) aging in overall hematopoietic and immune system health span has been appreciated. Much work has been done in model organisms to understand the intrinsic dysregulation that occurs in HSCs during aging, with the goal of identifying modifiable mechanisms that represent the proverbial "fountain of youth." Much more recently, the discovery of somatic mutations that are found to provide a selective advantage to HSCs and accumulate in the hematopoietic system during aging, termed clonal hematopoiesis (CH), inspires revisiting many of these previously defined drivers of HSC aging in the context of these somatic mutations. To truly understand these processes and develop a holistic picture of HSC aging, ongoing and future studies must include investigation of the critical changes that occur in the HSC niche or bone marrow microenvironment with aging, as increasing evidence supports that these HSC-extrinsic alterations provide necessary inflammation, signaling pathway activation or repression, and other selective pressures to favor HSC aging-associated phenotypes and CH. Here, we provide our perspectives based on the past 8 years of our own laboratory's investigations into these mechanisms and chart a path for integrative studies that, in our opinion, will provide an ideal opportunity to discover HSC and hematopoietic health span-extending interventions. This path includes examining when and how aging-associated HSC-intrinsic and HSC-extrinsic changes accumulate over time in different individuals and developing new models to track and test relevant HSC-extrinsic changes, complementary to innovative HSC lineage tracing systems that have recently been developed.

摘要

在过去的 25 年中,造血干细胞(HSC)衰老在整体造血和免疫系统健康寿命中的重要性已得到认可。在模式生物中已经进行了大量工作来了解 HSC 在衰老过程中发生的内在失调,其目标是确定可修饰的机制,这些机制代表了众所周知的“青春之泉”。最近,人们发现了体细胞突变,这些突变被认为为 HSC 提供了选择性优势,并在衰老过程中在造血系统中积累,称为克隆性造血(CH),这激发了重新审视这些先前定义的 HSC 衰老驱动因素在这些体细胞突变背景下的作用。为了真正理解这些过程并全面了解 HSC 衰老,正在进行和未来的研究必须包括研究 HSC 龛或骨髓微环境随衰老而发生的关键变化,因为越来越多的证据支持这些 HSC 细胞外改变提供必要的炎症、信号通路激活或抑制以及其他选择性压力,以有利于 HSC 衰老相关表型和 CH。在这里,我们根据我们实验室过去 8 年对这些机制的研究提供了我们的观点,并为综合研究制定了一个路径,我们认为这将是发现 HSC 和造血健康寿命延长干预措施的理想机会。这条路径包括检查随着时间的推移,衰老相关的 HSC 内在和 HSC 外在变化在不同个体中何时以及如何积累,并开发新的模型来跟踪和测试相关的 HSC 外在变化,这些模型与最近开发的创新 HSC 谱系追踪系统相辅相成。

相似文献

1
手牵手:衰老和克隆性造血的内在和外在驱动因素。
Exp Hematol. 2020 Nov;91:1-9. doi: 10.1016/j.exphem.2020.09.197. Epub 2020 Sep 28.
2
造血干细胞衰老:内在变化还是微环境影响?
Curr Opin Immunol. 2011 Aug;23(4):512-7. doi: 10.1016/j.coi.2011.05.006. Epub 2011 Jun 12.
3
造血干细胞及其龛位衰老的分子和细胞机制。
J Hematol Oncol. 2020 Nov 23;13(1):157. doi: 10.1186/s13045-020-00994-z.
4
年轻骨髓龛中衰老造血干细胞的有限再生。
J Exp Med. 2021 Mar 1;218(3). doi: 10.1084/jem.20192283.
5
造血干细胞衰老的细胞和分子机制及其临床前景。
Oxid Med Cell Longev. 2022 Apr 1;2022:2713483. doi: 10.1155/2022/2713483. eCollection 2022.
6
造血干细胞衰老的一种新机制:衰老改变了干细胞区室的克隆组成,但不影响单个干细胞。
Blood. 2008 Jun 15;111(12):5553-61. doi: 10.1182/blood-2007-11-123547. Epub 2008 Apr 15.
7
造血干细胞的衰老:DNA 损伤与突变?
Exp Hematol. 2016 Oct;44(10):895-901. doi: 10.1016/j.exphem.2016.06.253. Epub 2016 Jul 8.
8
骨髓微环境中 IGF1 的下降引发造血干细胞衰老。
Cell Stem Cell. 2021 Aug 5;28(8):1473-1482.e7. doi: 10.1016/j.stem.2021.03.017. Epub 2021 Apr 12.
9
[衰老与克隆性造血]。
Adv Gerontol. 2024;37(3):266-275.
10
在人类克隆性造血中,突变干细胞的选择优势与对炎症和衰老的反应减弱有关。
Cell Stem Cell. 2024 Aug 1;31(8):1127-1144.e17. doi: 10.1016/j.stem.2024.05.010. Epub 2024 Jun 24.

引用本文的文献

1
长期和短期造血干细胞比例的改变会导致髓系偏向性造血。
Elife. 2025 Aug 27;13:RP95880. doi: 10.7554/eLife.95880.
2
免疫参数的衰老相关变化:对老年人COVID-19免疫反应的影响。
Physiol Rep. 2025 May;13(10):e70364. doi: 10.14814/phy2.70364.
3
克隆性造血与实体癌
Cancer Sci. 2025 Aug;116(8):2055-2063. doi: 10.1111/cas.70097. Epub 2025 May 19.
4
造血谱系命运的(调控)
Blood. 2024 Jan 18;143(3):188-190. doi: 10.1182/blood.2023023000.
5
遗传性骨髓衰竭综合征中的克隆进化可预测疾病进展。
Hematology Am Soc Hematol Educ Program. 2023 Dec 8;2023(1):125-134. doi: 10.1182/hematology.2023000469.
6
Oncostatin M 信号对年轻 Dnmt3a 突变造血干细胞的转录和功能后果。
Exp Hematol. 2024 Feb;130:104131. doi: 10.1016/j.exphem.2023.11.005. Epub 2023 Nov 23.
7
血液系统恶性肿瘤中的免疫-表观遗传相互作用
Front Cell Dev Biol. 2023 Sep 21;11:1233383. doi: 10.3389/fcell.2023.1233383. eCollection 2023.
8
迈向肿瘤克隆性的系统层面探究。
iScience. 2023 Apr 6;26(5):106574. doi: 10.1016/j.isci.2023.106574. eCollection 2023 May 19.
9
炎症在髓系肿瘤发生和进展中的作用。
Blood Cancer Discov. 2023 Jul 5;4(4):254-266. doi: 10.1158/2643-3230.BCD-22-0176.
10
造血干细胞与免疫系统的发育和衰老。
Int J Mol Sci. 2023 Mar 20;24(6):5862. doi: 10.3390/ijms24065862.

本文引用的文献

1
骨髓基质通过微环境感应识别出 IL-6 和 TGFβ1 是造血衰老的调节因子。
Nat Commun. 2020 Aug 14;11(1):4075. doi: 10.1038/s41467-020-17942-7.
2
纵向细胞因子分析确定GRO-α和表皮生长因子为原发性血小板增多症疾病进展的潜在生物标志物。
Hemasphere. 2020 May 21;4(3):e371. doi: 10.1097/HS9.0000000000000371. eCollection 2020 Jun.
3
炎症的适应性反应有助于持续的髓系造血,并赋予骨髓增生异常综合征造血干细胞竞争优势。
Nat Immunol. 2020 May;21(5):535-545. doi: 10.1038/s41590-020-0663-z. Epub 2020 Apr 20.
4
内皮细胞 mTOR 在衰老过程中维持造血。
J Exp Med. 2020 Jun 1;217(6). doi: 10.1084/jem.20191212.
5
衰老造血干细胞的机制和 rejuvenation 策略。
J Hematol Oncol. 2020 Apr 6;13(1):31. doi: 10.1186/s13045-020-00864-8.
7
Tet2 介导的非条件性小鼠克隆性造血加速与年龄相关的心脏功能障碍。
JCI Insight. 2020 Mar 26;5(6):135204. doi: 10.1172/jci.insight.135204.
8
60 年的克隆性造血研究:从 X 染色体失活研究到驱动突变的鉴定。
Exp Hematol. 2020 Mar;83:2-11. doi: 10.1016/j.exphem.2020.01.008. Epub 2020 Jan 28.
9
环境对克隆性造血的影响。
Exp Hematol. 2020 Mar;83:66-73. doi: 10.1016/j.exphem.2019.12.005. Epub 2019 Dec 29.
10
克隆性造血、衰老与心血管疾病。
Exp Hematol. 2020 Mar;83:95-104. doi: 10.1016/j.exphem.2019.12.006. Epub 2019 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验