Suppr超能文献

基于深度神经网络的黏土增强聚合物纳米复合材料力学性能建模

Modeling of Mechanical Properties of Clay-Reinforced Polymer Nanocomposites Using Deep Neural Network.

作者信息

Zazoum Bouchaib, Triki Ennouri, Bachri Abdel

机构信息

Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia.

CCNB-INNOV, Collège Communautaire du Nouveau-Brunswick, Caraquet, NB E1W 1B6, Canada.

出版信息

Materials (Basel). 2020 Sep 25;13(19):4266. doi: 10.3390/ma13194266.

Abstract

Due to the non-linear characteristics of the processing parameters, predicting the desired properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus, it is essential to use a machine learning approach to determine the optimum processing parameters. In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer content, and processing parameters as input, was developed to predict the mechanical properties, including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites. The high accuracy of the developed model proves that DNN can be used as an efficient tool for predicting mechanical properties of the nanocomposites in terms of four independent parameters.

摘要

由于加工参数的非线性特性,使用传统回归方法预测纳米复合材料的期望性能往往不尽人意。因此,使用机器学习方法来确定最佳加工参数至关重要。在本研究中,开发了一种以纳米粘土和增容剂含量以及加工参数为输入的反向传播深度神经网络(DNN),以预测粘土增强聚乙烯纳米复合材料的力学性能,包括拉伸模量和拉伸强度。所开发模型的高精度证明,DNN可作为一种有效的工具,用于根据四个独立参数预测纳米复合材料的力学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3acd/7579244/2ea4a75e7c83/materials-13-04266-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验