Zazoum Bouchaib, Triki Ennouri, Bachri Abdel
Department of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia.
CCNB-INNOV, Collège Communautaire du Nouveau-Brunswick, Caraquet, NB E1W 1B6, Canada.
Materials (Basel). 2020 Sep 25;13(19):4266. doi: 10.3390/ma13194266.
Due to the non-linear characteristics of the processing parameters, predicting the desired properties of nanocomposites using the conventional regression approach is often unsatisfactory. Thus, it is essential to use a machine learning approach to determine the optimum processing parameters. In this study, a backpropagation deep neural network (DNN) with nanoclay and compatibilizer content, and processing parameters as input, was developed to predict the mechanical properties, including tensile modulus and tensile strength, of clay-reinforced polyethylene nanocomposites. The high accuracy of the developed model proves that DNN can be used as an efficient tool for predicting mechanical properties of the nanocomposites in terms of four independent parameters.
由于加工参数的非线性特性,使用传统回归方法预测纳米复合材料的期望性能往往不尽人意。因此,使用机器学习方法来确定最佳加工参数至关重要。在本研究中,开发了一种以纳米粘土和增容剂含量以及加工参数为输入的反向传播深度神经网络(DNN),以预测粘土增强聚乙烯纳米复合材料的力学性能,包括拉伸模量和拉伸强度。所开发模型的高精度证明,DNN可作为一种有效的工具,用于根据四个独立参数预测纳米复合材料的力学性能。