Suppr超能文献

HLA-DR 抗原结合槽刚性对 T 细胞识别的影响。

Impact of HLA-DR Antigen Binding Cleft Rigidity on T Cell Recognition.

机构信息

Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.

Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.

出版信息

Int J Mol Sci. 2020 Sep 25;21(19):7081. doi: 10.3390/ijms21197081.

Abstract

The interaction between T cell receptor (TCR) and peptide (p)-Human Leukocyte Antigen (HLA) complexes is the critical first step in determining T cell responses. X-ray crystallographic studies of pHLA in TCR-bound and free states provide a structural perspective that can help understand T cell activation. These structures represent a static "snapshot", yet the nature of pHLAs and their interactions with TCRs are highly dynamic. This has been demonstrated for HLA class I molecules with in silico techniques showing that some interactions, thought to stabilise pHLA-I, are only transient and prone to high flexibility. Here, we investigated the dynamics of HLA class II molecules by focusing on three allomorphs (HLA-DR1, -DR11 and -DR15) that are able to present the same epitope and activate CD4+ T cells. A single TCR (F24) has been shown to recognise all three HLA-DR molecules, albeit with different affinities. Using molecular dynamics and crystallographic ensemble refinement, we investigate the molecular basis of these different affinities and uncover hidden roles for HLA polymorphic residues. These polymorphisms were responsible for the widening of the antigen binding cleft and disruption of pHLA-TCR interactions, underpinning the hierarchy of F24 TCR binding affinity, and ultimately T cell activation. We expanded this approach to all available pHLA-DR structures and discovered that all HLA-DR molecules were inherently rigid. Together with in vitro protein stability and peptide affinity measurements, our results suggest that HLA-DR1 possesses inherently high protein stability, and low HLA-DM susceptibility.

摘要

T 细胞受体 (TCR) 与肽 (p)-人类白细胞抗原 (HLA) 复合物之间的相互作用是决定 T 细胞反应的关键第一步。TCR 结合和游离状态下 pHLA 的 X 射线晶体学研究提供了一个结构视角,可以帮助理解 T 细胞的激活。这些结构代表了一个静态的“快照”,然而,pHLAs 的性质及其与 TCR 的相互作用是高度动态的。这已经通过计算机模拟技术证明了 HLA 类 I 分子的情况,表明一些被认为稳定 pHLA-I 的相互作用只是短暂的,容易发生高度的灵活性。在这里,我们通过关注能够呈现相同表位并激活 CD4+T 细胞的三种同种异体型 (HLA-DR1、-DR11 和 -DR15) 来研究 HLA 类 II 分子的动力学。已经表明,单个 TCR (F24) 能够识别所有三种 HLA-DR 分子,尽管亲和力不同。我们使用分子动力学和晶体学组合精修,研究了这些不同亲和力的分子基础,并揭示了 HLA 多态性残基的隐藏作用。这些多态性导致抗原结合裂隙变宽,破坏 pHLA-TCR 相互作用,从而支撑 F24 TCR 结合亲和力的层次结构,并最终激活 T 细胞。我们将这种方法扩展到所有可用的 pHLA-DR 结构,并发现所有 HLA-DR 分子本质上都是刚性的。结合体外蛋白质稳定性和肽亲和力测量,我们的结果表明 HLA-DR1 具有内在的高蛋白质稳定性和低 HLA-DM 易感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb9c/7582474/bf1f42cd96b9/ijms-21-07081-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验