Suppr超能文献

基于气体绝缘开关设备中超高频传感器的局部放电诊断的单样本学习

One-Shot Learning for Partial Discharge Diagnosis Using Ultra-High-Frequency Sensor in Gas-Insulated Switchgear.

作者信息

Tuyet-Doan Vo-Nguyen, Do The-Duong, Tran-Thi Ngoc-Diem, Youn Young-Woo, Kim Yong-Hwa

机构信息

Department of Electronic Engineering, Myongji University, Yongin 17058, Korea.

HVDC Research Division, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea.

出版信息

Sensors (Basel). 2020 Sep 28;20(19):5562. doi: 10.3390/s20195562.

Abstract

In recent years, deep learning has been successfully used in order to classify partial discharges (PDs) for assessing the condition of insulation systems in different electrical equipment. However, fault diagnosis using deep learning is still challenging, as it requires a large amount of training data, which is difficult and expensive to obtain in the real world. This paper proposes a novel one-shot learning method for fault diagnosis using a small dataset of phase-resolved PDs (PRPDs) in a gas-insulated switchgear (GIS). The proposed method is based on a Siamese network framework, which employs a distance metric function for predicting sample pairs from the same PRPD class or different PRPD classes. Experimental results over the small PRPD dataset that was obtained from an ultra-high-frequency sensor in the GIS show that the proposed method achieves outstanding performance for PRPD fault diagnosis as compared with the previous methods.

摘要

近年来,深度学习已成功用于对局部放电(PD)进行分类,以评估不同电气设备中绝缘系统的状况。然而,使用深度学习进行故障诊断仍然具有挑战性,因为它需要大量的训练数据,而在现实世界中获取这些数据既困难又昂贵。本文提出了一种新颖的一次性学习方法,用于在气体绝缘开关设备(GIS)中使用少量相分辨局部放电(PRPD)数据集进行故障诊断。所提出的方法基于连体网络框架,该框架采用距离度量函数来预测来自同一PRPD类或不同PRPD类的样本对。在从GIS中的超高频传感器获得的小PRPD数据集上的实验结果表明,与先前的方法相比,所提出的方法在PRPD故障诊断方面取得了优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c284/7582290/e76fb2242ec5/sensors-20-05562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验