Hong Feng, Pang Ge, Diao Lijuan, Fu Zhendong, Liu Guixia, Dong Xiangting, Yu Wensheng, Wang Jinxian
Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, P. R. China.
Tianjin Jinhang Technical Physics Institute, Tianjin, 300070, P. R. China.
Dalton Trans. 2020 Oct 12;49(39):13805-13817. doi: 10.1039/d0dt02935a.
Nowadays, the development of Mn4+-activated fluoride phosphors with efficient water and thermal stabilities continues to pose a huge challenge with regard to prolonging the service life and stabilizing the light output for phosphor-converted white light-emitting diodes (pc-WLEDs). Therefore, the synthesis strategy of simple crystal structure optimization is proposed to realize simultaneously the high hydrophobic and thermal stabilities of fluoride phosphors. Herein, Mn4+-doped Na2Si1-yGeyF6 red phosphors are successfully synthesized by a simple coprecipitation method. Satisfactorily, the optimization of Ge4+ and Mn4+ concentrations successfully enhances the luminescence intensity of the original phosphor (Na2SiF6:Mn4+) and an obvious red shift can be found. Moreover, the CIE coordinates of red light show that the phosphor has low correlated color temperature and excellent color purity. Based on excitation and emission spectra, the crystal field strength (Dq), Racah parameters (B and C) and nephelauxetic ratio (β1) show that a new Na2Si0.5Ge0.5F6 matrix can meet the high requirements of the crystal field environment when Mn4+ becomes the fluorescence center. Interestingly, the local structure modulation stabilizes the state of existence of Mn4+ in the matrix and enhances the moisture resistance of the phosphor. In addition, the as-prepared Na2Si0.5Ge0.5F6:Mn4+ phosphor possesses admirable thermal quenching behavior and color stability at high temperature. More importantly, low correlated color temperature (3408 K), high color rendering index (89.4) and preeminent luminous efficiency (112.89 Im W-1) are achieved using the YAG:Ce3+-Na2Si0.5Ge0.5F6:0.06Mn4+ system as color converters for warm pc-WLEDs. The work provides a new insight into the construction of red phosphors with favorable water and thermal stabilities for warm pc-WLEDs.
如今,对于用于磷光体转换白光发光二极管(pc-WLEDs)的Mn4+激活氟化物磷光体而言,在延长其使用寿命和稳定光输出方面,开发具有高效水稳定性和热稳定性的磷光体仍然面临巨大挑战。因此,提出了简单晶体结构优化的合成策略,以同时实现氟化物磷光体的高疏水性和热稳定性。在此,通过简单的共沉淀法成功合成了Mn4+掺杂的Na2Si1-yGeyF6红色磷光体。令人满意的是,Ge4+和Mn4+浓度的优化成功提高了原始磷光体(Na2SiF6:Mn4+)的发光强度,并且可以发现明显的红移。此外,红光的CIE坐标表明该磷光体具有低相关色温以及优异的色纯度。基于激发和发射光谱,晶体场强度(Dq)、拉卡参数(B和C)以及电子云扩张系数(β1)表明,当Mn4+成为荧光中心时,新型Na2Si0.5Ge0.5F6基质能够满足晶体场环境的高要求。有趣的是,局部结构调制稳定了Mn4+在基质中的存在状态,并提高了磷光体的防潮性。此外,所制备的Na2Si0.5Ge0.5F6:Mn4+磷光体在高温下具有令人钦佩的热猝灭行为和颜色稳定性。更重要的是,使用YAG:Ce3+-Na2Si0.5Ge0.5F6:0.06Mn4+体系作为暖色调pc-WLEDs的颜色转换器,实现了低相关色温(3408 K)、高显色指数(89.4)和卓越的发光效率(112.89 lm W-1)。这项工作为构建具有良好水稳定性和热稳定性的暖色调pc-WLEDs红色磷光体提供了新的见解。