Ma Xuekai, Kartashov Yaroslav V, Ferrando Albert, Schumacher Stefan
Opt Lett. 2020 Oct 1;45(19):5311-5314. doi: 10.1364/OL.405844.
We address topological currents in polariton condensates excited by uniform resonant pumps in finite honeycomb arrays of microcavity pillars with a hole in the center. Such currents arise under combined action of the spin-orbit coupling and Zeeman splitting, which breaks the time-reversal symmetry and opens a topological gap in the spectrum of the structure. The most representative feature of this structure is the presence of two interfaces, inner and outer ones, where the directions of topological currents are opposite. Due to the finite size of the structure, polariton-polariton interactions lead to coupling of the edge states at the inner and outer interfaces, which depends on the size of the hollow region. Moreover, switching between currents can be realized by tuning the pump frequency. We illustrate that currents in this finite structure can be stable and study bistability effects arising due to the resonant character of the pump.
我们研究了在中心有孔的微腔柱体的有限蜂窝阵列中,由均匀共振泵浦激发的极化激元凝聚体中的拓扑电流。这种电流在自旋轨道耦合和塞曼分裂的共同作用下产生,这打破了时间反演对称性,并在结构的光谱中打开了一个拓扑间隙。这种结构最具代表性的特征是存在两个界面,即内界面和外界面,拓扑电流在这两个界面处的方向相反。由于结构的有限尺寸,极化激元 - 极化激元相互作用导致内界面和外界面处的边缘态耦合,这取决于中空区域的大小。此外,可以通过调节泵浦频率来实现电流之间的切换。我们表明,这种有限结构中的电流可以是稳定的,并研究了由于泵浦的共振特性而产生的双稳效应。