Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck, Tyrol 6020, Austria.
Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck, Tyrol 6020, Austria.
Inorg Chem. 2020 Oct 19;59(20):15312-15323. doi: 10.1021/acs.inorgchem.0c02298. Epub 2020 Oct 2.
-Heterocyclic carbene (NHC) gold(I) complexes offer great prospects in medicinal chemistry as antiproliferative, anticancer, and antibacterial agents. However, further development requires a thorough understanding of their reaction behavior in aqueous media. Herein, we report the conversion of the bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(I) ((NHC)AuBr, ) complex in acetonitrile/water mixtures to the bis[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(I) ([(NHC)Au], ), which is subsequently oxidized to the dibromidobis[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(III) ([(NHC)AuBr], ). By combining experimental data from HPLC, NMR, and (LC-)/HR-MS with computational results from DFT calculations, we outline a detailed ligand scrambling reaction mechanism. The key step is the formation of the stacked ((NHC)AuBr) dimer () that rearranges to the T-shaped intermediate Br(NHC)Au-AuBr (). The dissociation of Br from and recombination lead to (NHC)Au-AuBr () followed by the separation into [(NHC)Au] () and [AuBr] (). [AuBr] is not stable in an aqueous environment and degrades in an internal redox reaction to Au and Br. The latter in turn oxidizes to the gold(III) species . The reported ligand rearrangement of the (NHC)AuBr complex differs from that found for related silver(I) analogous. A detailed understanding of this scrambling mechanism is of utmost importance for the interpretation of their biological activity and will help to further optimize them for biomedical and other applications.
杂环卡宾(NHC)金(I)配合物作为抗增殖、抗癌和抗菌剂,在药物化学中具有广阔的前景。然而,进一步的发展需要深入了解它们在水介质中的反应行为。在此,我们报告了溴化[3-乙基-4-(4-甲氧基苯基)-5-(2-甲氧基吡啶-5-基)-1-丙基咪唑-2-亚基]金(I)((NHC)AuBr, )配合物在乙腈/水混合物中的转化为双[3-乙基-4-(4-甲氧基苯基)-5-(2-甲氧基吡啶-5-基)-1-丙基咪唑-2-亚基]金(I)([(NHC)Au], ),随后被氧化为二溴化二[3-乙基-4-(4-甲氧基苯基)-5-(2-甲氧基吡啶-5-基)-1-丙基咪唑-2-亚基]金(III)([(NHC)AuBr], )。通过将来自 HPLC、NMR 和 (LC-)/HR-MS 的实验数据与来自 DFT 计算的计算结果相结合,我们概述了一个详细的配体重排反应机制。关键步骤是形成堆积的((NHC)AuBr)二聚体(),它重排为 T 形中间体 Br(NHC)Au-AuBr()。从和重组导致 Br 的解离,导致 (NHC)Au-AuBr()随后分离成(NHC)Au和AuBr。[AuBr]在水环境中不稳定,在内部氧化还原反应中降解为 Au 和 Br。后者反过来又将氧化为金(III)物种。所报道的 (NHC)AuBr 配合物的配体重排与相关的银(I)类似物不同。对这种重排机制的详细了解对于解释它们的生物活性至关重要,并有助于进一步优化它们在生物医学和其他应用中的应用。