Suppr超能文献

微生物发酵过程中宿主细胞突变和状态转移的缓解:通量记忆的视角。

Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory.

机构信息

Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.

ArcherDX, Inc., St. Louis, MO, 63130, USA.

出版信息

Curr Opin Biotechnol. 2020 Dec;66:227-235. doi: 10.1016/j.copbio.2020.08.003. Epub 2020 Sep 29.

Abstract

Microbial engineering forces flux redistribution to accommodate higher production rates, straining the cellular supply chain and leading to growth deficiency. Thus, there is a selective pressure to alleviate metabolic burden and revert towards the innate flux distribution ('flux memory') via mutations. Suboptimal fermentation exacerbates this phenomenon as increased number of generations prolong the selection window for the underlying flux memory to generate faster growing non-producers. New strategies to mitigate host genetic instability include laboratory evolution, high-resolution genome resequencing combined with phenotype screening, mismatch repair protein engineering, and advanced synthetic biology approaches (e.g. oscillators and biosensor regulators). Moreover, C-metabolic flux analysis can quantify flux suboptimality driven by metabolic burdens and cultivation stresses. Elucidation of correlations between metabolic suboptimality and host mutation rates/spectra may lead to early stage risk assessments of culture-population's regime shift during process scale-up as well as strategies to boost bioproductions.

摘要

微生物工程迫使通量重新分配以适应更高的生产速率,这给细胞供应链带来压力,导致生长缺陷。因此,存在一种通过突变减轻代谢负担并恢复固有通量分布(“通量记忆”)的选择压力。较差的发酵条件会加剧这种现象,因为随着世代数的增加,潜在通量记忆的选择窗口会延长,从而产生生长更快的非生产者。缓解宿主遗传不稳定性的新策略包括实验室进化、高分辨率基因组重测序与表型筛选、错配修复蛋白工程以及先进的合成生物学方法(例如振荡器和生物传感器调节剂)。此外,C 代谢通量分析可以量化由代谢负担和培养压力引起的通量次优性。阐明代谢次优性与宿主突变率/谱之间的相关性,可能有助于在工艺放大过程中早期评估培养物种群的状态转变风险,以及提高生物产量的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验