Suppr超能文献

对千足虫形态和运动动力学的基本理解。

Fundamental understanding of millipede morphology and locomotion dynamics.

机构信息

Center for Energy Harvesting Materials and Systems (CEHMS), Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, VA 24061, United States of America.

University of Mary, Bismarck ND 58504, United States of America.

出版信息

Bioinspir Biomim. 2020 Dec 21;16(2). doi: 10.1088/1748-3190/abbdcc.

Abstract

A detailed model for the locomotory mechanics used by millipedes is provided here through systematic experimentation on the animal and validation of observations through a biomimetic robotic platform. Millipedes possess a powerful gait that is necessary for generating large thrust force required for proficient burrowing. Millipedes implement a metachronal gait through movement of many legs that generates a traveling wave. This traveling wave is modulated by the animal to control the magnitude of thrust force in the direction of motion for burrowing, climbing, or walking. The quasi-static model presented for the millipede locomotion mechanism matches experimental observations on live millipedes and results obtained from a biomimetic robotic platform. The model addresses questions related to the unique morphology of millipedes with respect to their locomotory performance. A complete understanding of the physiology of millipedes and mechanisms that provide modulation of the traveling wave locomotion using a metachronal gait to increase their forward thrust is provided. Further, morphological features needed to optimize various locomotory and burrowing functions are discussed. Combined, these results open opportunity for development of biologically inspired locomotory methods for miniaturized robotic platforms traversing terrains and substrates that present large resistances.

摘要

本文通过对动物的系统实验,以及通过生物仿生机器人平台对观察结果进行验证,为千足虫的运动力学提供了一个详细的模型。千足虫具有强大的步态,这对于产生熟练挖掘所需的大推力是必要的。千足虫通过许多腿的运动来实现节律步态,从而产生行波。这种行波通过动物来调节,以控制在挖掘、攀爬或行走方向上的推力大小。为千足虫运动机制提出的准静态模型与活体千足虫的实验观察和生物仿生机器人平台的结果相吻合。该模型解决了与千足虫独特形态有关的运动性能问题。本文提供了对千足虫生理学和机制的全面理解,这些机制通过节律步态来调节行波运动,以增加它们的前向推力。此外,还讨论了优化各种运动和挖掘功能所需的形态特征。总之,这些结果为开发用于在具有较大阻力的地形和基质上行驶的小型化机器人平台的生物启发运动方法提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验