Suppr超能文献

能够模拟睫状体调节功能的单功能晶状体。

Single function crystalline lens capable of mimicking ciliary body accommodation.

作者信息

Jaimes-Nájera A, Gómez-Correa J E, Coello V, Pierscionek B K, Chávez-Cerda S

机构信息

Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, 64849, Mexico.

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Unidad Monterrey, PIIT Apodaca, NL 66629, Mexico.

出版信息

Biomed Opt Express. 2020 Jun 12;11(7):3699-3716. doi: 10.1364/BOE.386459. eCollection 2020 Jul 1.

Abstract

The lens is a complex optical component of the human eye because of its physiological structure: the surface is aspherical and the structural entities create a gradient refractive index (GRIN). Most existent models of the lens deal with its external shape independently of the refractive index and, subsequently, through optimization processes, adjust the imaging properties. In this paper, we propose a physiologically realistic GRIN model of the lens based on a single function for the whole lens that accurately describes different accommodative states simultaneously providing the corresponding refractive index distribution and the external shape of the lens by changing a single parameter that we associate with the function of the ciliary body. This simple, but highly accurate model, is incorporated into a schematic eye constructed with reported experimental biometric data and accommodation is simulated over a range of 0 to 6 diopters to select the optimum levels of image quality. Changes with accommodation in equatorial and total axial lens thicknesses, as well as aberrations, are found to lie within reported biometric data ranges.

摘要

由于其生理结构,晶状体是人眼的一个复杂光学部件:其表面是非球面的,并且结构实体形成渐变折射率(GRIN)。大多数现有的晶状体模型处理其外部形状时独立于折射率,随后通过优化过程来调整成像特性。在本文中,我们基于一个适用于整个晶状体的单一函数提出了一种生理逼真的晶状体GRIN模型,该函数通过改变一个与睫状体功能相关联的单一参数,准确地描述不同的调节状态,同时提供相应的折射率分布和晶状体的外部形状。这个简单但高度精确的模型被纳入一个用已报道的实验生物测量数据构建的简化眼模型中,并在0到6屈光度的范围内模拟调节,以选择最佳图像质量水平。发现赤道和总轴向晶状体厚度以及像差随调节的变化处于已报道的生物测量数据范围内。

相似文献

1
Single function crystalline lens capable of mimicking ciliary body accommodation.
Biomed Opt Express. 2020 Jun 12;11(7):3699-3716. doi: 10.1364/BOE.386459. eCollection 2020 Jul 1.
3
Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
Optom Vis Sci. 1997 Feb;74(2):114-9. doi: 10.1097/00006324-199702000-00024.
4
Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.
Biomed Opt Express. 2018 Feb 21;9(3):1272-1282. doi: 10.1364/BOE.9.001272. eCollection 2018 Mar 1.
6
An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.
Biomed Opt Express. 2014 Apr 28;5(5):1649-63. doi: 10.1364/BOE.5.001649. eCollection 2014 May 1.
7
Equivalent refractive index of the human lens upon accommodative response.
Optom Vis Sci. 2008 Dec;85(12):1179-84. doi: 10.1097/OPX.0b013e31818e8d57.
8
Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
Biomed Opt Express. 2016 Apr 22;7(5):1985-99. doi: 10.1364/BOE.7.001985. eCollection 2016 May 1.
9
Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling.
Vision Res. 2019 Jul;160:52-59. doi: 10.1016/j.visres.2019.04.008. Epub 2019 May 21.
10
Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
Vision Res. 2013 Jun 28;86:27-34. doi: 10.1016/j.visres.2013.04.004. Epub 2013 Apr 15.

本文引用的文献

2
Off-axis optical coherence tomography imaging of the crystalline lens to reconstruct the gradient refractive index using optical methods.
Biomed Opt Express. 2019 Jun 26;10(7):3622-3634. doi: 10.1364/BOE.10.003622. eCollection 2019 Jul 1.
3
Schematic eye models to mimic the behavior of the accommodating human eye.
J Cataract Refract Surg. 2018 May;44(5):627-641. doi: 10.1016/j.jcrs.2018.02.024.
4
Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.
Biomed Opt Express. 2018 Feb 21;9(3):1272-1282. doi: 10.1364/BOE.9.001272. eCollection 2018 Mar 1.
5
Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT600-10. doi: 10.1167/iovs.15-18933.
6
Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
Biomed Opt Express. 2016 Apr 22;7(5):1985-99. doi: 10.1364/BOE.7.001985. eCollection 2016 May 1.
8
Optical models of the human eye.
Clin Exp Optom. 2016 Mar;99(2):99-106. doi: 10.1111/cxo.12352. Epub 2016 Mar 10.
10
Composite modified Luneburg model of human eye lens.
Opt Lett. 2015 Sep 1;40(17):3990-3. doi: 10.1364/OL.40.003990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验