Jaimes-Nájera A, Gómez-Correa J E, Coello V, Pierscionek B K, Chávez-Cerda S
Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, 64849, Mexico.
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Unidad Monterrey, PIIT Apodaca, NL 66629, Mexico.
Biomed Opt Express. 2020 Jun 12;11(7):3699-3716. doi: 10.1364/BOE.386459. eCollection 2020 Jul 1.
The lens is a complex optical component of the human eye because of its physiological structure: the surface is aspherical and the structural entities create a gradient refractive index (GRIN). Most existent models of the lens deal with its external shape independently of the refractive index and, subsequently, through optimization processes, adjust the imaging properties. In this paper, we propose a physiologically realistic GRIN model of the lens based on a single function for the whole lens that accurately describes different accommodative states simultaneously providing the corresponding refractive index distribution and the external shape of the lens by changing a single parameter that we associate with the function of the ciliary body. This simple, but highly accurate model, is incorporated into a schematic eye constructed with reported experimental biometric data and accommodation is simulated over a range of 0 to 6 diopters to select the optimum levels of image quality. Changes with accommodation in equatorial and total axial lens thicknesses, as well as aberrations, are found to lie within reported biometric data ranges.
由于其生理结构,晶状体是人眼的一个复杂光学部件:其表面是非球面的,并且结构实体形成渐变折射率(GRIN)。大多数现有的晶状体模型处理其外部形状时独立于折射率,随后通过优化过程来调整成像特性。在本文中,我们基于一个适用于整个晶状体的单一函数提出了一种生理逼真的晶状体GRIN模型,该函数通过改变一个与睫状体功能相关联的单一参数,准确地描述不同的调节状态,同时提供相应的折射率分布和晶状体的外部形状。这个简单但高度精确的模型被纳入一个用已报道的实验生物测量数据构建的简化眼模型中,并在0到6屈光度的范围内模拟调节,以选择最佳图像质量水平。发现赤道和总轴向晶状体厚度以及像差随调节的变化处于已报道的生物测量数据范围内。