Comparative Histolab Padova, Padova, Italy.
Anat Rec (Hoboken). 2021 Apr;304(4):732-757. doi: 10.1002/ar.24515. Epub 2020 Oct 12.
Here, we review the development, morphology, genes, and proteins of claws in reptiles. Claws likely form owing to the inductive influence of phalangeal mesenchyme on the apical epidermis of developing digits, resulting in hyperproliferation and intense protein synthesis in the dorsal epidermis, which forms the unguis. The tip of claws results from prevalent cell proliferation and distal movement along most of the ungueal epidermis in comparison to the ventral surface forming the subunguis. Asymmetrical growth between the unguis and subunguis forces beta-cells from the unguis to rotate into the apical part of the subunguis, sharpening the claw tip. Further sharpening occurs by scratching and mechanical wearing. Ungueal keratinocytes elongate, form an intricate perimeter and cementing junctions, and remain united impeding desquamation. In contrast, thin keratinocytes in the subunguis form a smooth perimeter, accumulate less corneous beta proteins (CBPs) and cysteine-poor intermediate filament (IF)-keratins, and desquamate. In addition to prevalent glycine-cysteine-tyrosine rich CBPs, special cysteine-rich IF-keratins are also synthesized in the claw, generating numerous SS bonds that harden the thick and compact corneous material. Desquamation and mechanical wear at the tip ensure that the unguis curvature remains approximately stable over time. Reptilian claws are likely very ancient in evolution, although the unguis differentiated like the outer scale surface of scales, while the subunguis might have derived from the inner scale surface. The few hair-like IF-keratins synthesized in reptilian claws indicate that ancestors of sauropsids and mammals shared cysteine-rich IF-keratins. However, the number of these keratins remained low in reptiles, while new types of CBPs function to strengthen claws.
在这里,我们回顾了爬行动物爪子的发育、形态、基因和蛋白质。爪子的形成可能是由于指(趾)间中胚层对发育中的指(趾)端表皮的诱导影响,导致背侧表皮过度增殖和强烈的蛋白质合成,形成爪。爪子的尖端是由于普遍的细胞增殖和沿着大部分爪表皮向远端移动形成副爪,而副爪的形成则是由于腹侧表面的形成。爪和副爪之间的不对称生长迫使爪的β细胞从爪旋转到副爪的顶端,使爪尖变锋利。进一步的变锋利是通过抓挠和机械磨损来实现的。爪角蛋白细胞伸长,形成复杂的周长和胶结连接,并保持联合状态,阻碍角质层剥落。相比之下,副爪中的薄角蛋白细胞形成平滑的周长,积累较少的角蛋白β蛋白(CBPs)和半胱氨酸贫乏的中间丝(IF)角蛋白,并剥落。除了普遍存在的甘氨酸-半胱氨酸-酪氨酸丰富的 CBPs 外,在爪中还合成了特殊的富含半胱氨酸的 IF 角蛋白,产生了大量的 SS键,使厚而致密的角质物质变硬。尖端的剥落和机械磨损确保了爪的曲率随时间大致稳定。爬行动物的爪子在进化中可能非常古老,尽管爪的分化类似于鳞片的外鳞表面,而副爪可能来源于内鳞表面。在爬行动物的爪子中合成的少量毛发状 IF 角蛋白表明,蜥脚类动物和哺乳动物的祖先共同拥有富含半胱氨酸的 IF 角蛋白。然而,这些角蛋白在爬行动物中的数量仍然很少,而新型的 CBPs 则用于增强爪子的强度。