Biosystems and Agricultural Engineering, Univ. of Kentucky, Lexington, KY, 40546, USA.
USDA Agricultural Research Service, Soil Drainage Research Drainage Unit, Columbus, OH, 43210, USA.
J Environ Qual. 2020 Sep;49(5):1370-1383. doi: 10.1002/jeq2.20116. Epub 2020 Jul 23.
Recent research on tile-drainage has placed emphasis on dissolved reactive phosphorus (DRP) delivery and transport pathways but less emphasis on particulate P (PP), resulting in its exclusion from agricultural water management models. In this study, we quantified the fluxes, mechanisms, and factors driving PP delivery into tiles through statistical analysis of a long-term hydrologic and water quality dataset. The dataset includes 5 yr of surface and tile discharge, total P (TP), DRP, total nitrogen (TN), and dissolved inorganic N concentrations from two edge-of-field study sites with contrasting soil and management practices. Hydrograph recession techniques were coupled with multiple linear regression for understanding hydrologic flow pathways, and empirical mode decomposition (EMD) time-series analysis was used to determine the significance of PP seasonality processes and the effect of management practices. The analysis of hydrologic flow pathways demonstrated that quickflow contributed 66 and 36% of subsurface discharge in the clay and loam sites, respectively. Phosphorus loading analysis showed that macropore flow plays a significant role in PP delivery to subsurface P loading and that PP significantly contributed to TP and DRP delivery; however, greater PP loadings were observed at the clay site despite greater subsurface discharge and soil test P levels at the loam site. Furthermore, PP delivery was significantly affected by environmental conditions and management practices. We highlight the efficacy of hydrograph recession analysis for identifying macropore and diffuse drainage, of P/N ratios to characterize sediment delivery mechanisms in tiles, and of EMD to detect management impacts on TP and DRP at the field scale.
最近关于沟渠排水的研究强调了溶解反应性磷(DRP)的输送和迁移途径,但对颗粒磷(PP)的关注较少,导致其被排除在农业水管理模型之外。在这项研究中,我们通过对长期水文和水质数据集的统计分析,量化了通过沟渠输送 PP 的通量、机制和驱动因素。该数据集包括来自两个具有不同土壤和管理实践的田间边缘研究地点的 5 年地表和沟渠排放、总磷(TP)、DRP、总氮(TN)和溶解无机 N 浓度。采用退水曲线技术与多元线性回归相结合的方法来理解水文流动途径,并用经验模态分解(EMD)时间序列分析来确定 PP 季节性过程的重要性和管理实践的影响。对水文流动途径的分析表明,快速流分别贡献了粘土和壤土站点地下排水的 66%和 36%。磷负荷分析表明,大孔流在 PP 向地下磷负荷的输送中起着重要作用,并且 PP 对 TP 和 DRP 的输送有显著贡献;然而,尽管壤土站点的地下排水量和土壤测试磷水平较大,但粘土站点的 PP 负荷更大。此外,PP 的输送受到环境条件和管理实践的显著影响。我们强调了退水曲线分析在识别大孔和漫流、P/N 比在沟渠中描述泥沙输送机制以及 EMD 在检测管理对田间 TP 和 DRP 的影响方面的有效性。